
(ii) it does not consider that the losses vary consider-
ably during training. To address these challenges, we
proposed dynamically computing weights for losses
at every training stage. This method efficiently cir-
cumvents the need for intensive parameter searches
and adjusts weights in real time, reflecting the evolv-
ing nature of training losses. We conducted experi-
ments on a dental panoramic radiograph data set to
prove our method’s efficiency. Future work includes
experimenting with other strategies to integrate fea-
tures from the component tasks, synergistically.
ACKNOWLEDGMENT
Brazilian National Council for Scientific and Tech-
nological Development supported Luciano Oliveira
and Igor Prado under grants 308580/2021-4 and
118442/2023-6. Fundac¸
˜
ao de Apoio
`
a Pesquisa do
Estado da Bahia supported Bernardo Silva and David
Lima under grants BOL0569/2020 BOL1383/2023.
REFERENCES
Badran, D. H., Othman, D. A., Thnaibat, H. W., and M.,
A. W. (2015). Predictive accuracy of mandibular ra-
mus flexure as a morphologic indicator of sex dimor-
phism in jordanians. International Journal of Mor-
phology, 33(4):1248–1254.
Cipolla, R., Gal, Y., and Kendall, A. (2018). Multi-task
learning using uncertainty to weigh losses for scene
geometry and semantics. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7482–7491.
Hougaz, A., Lima, D., Peters, B., Cury, P., and Oliveira,
L. (2023). Sex estimation on panoramic dental ra-
diographs: A methodological approach. In Anais do
XXIII Simp
´
osio Brasileiro de Computac¸
˜
ao Aplicada
`
a
Sa
´
ude, pages 115–125, Porto Alegre, RS, Brasil. SBC.
Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
z. (2019). Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alch
´
e-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32, pages 1–
11. Curran Associates, Inc.
Ili
´
c, I., Vodanovi
´
c, M., and Suba
ˇ
si
´
c, M. (2019). Gender
estimation from panoramic dental x-ray images using
deep convolutional networks. In IEEE EUROCON
2019 -18th International Conference on Smart Tech-
nologies, pages 1–5.
Jader, G., Fontineli, J., Ruiz, M., Abdalla, K., Pithon, M.,
and Oliveira, L. (2018). Deep instance segmentation
of teeth in panoramic x-ray images. In 2018 31st SIB-
GRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), pages 400–407.
Ke, W., Fan, F., Liao, P., Lai, Y., Wu, Q., Du, W., Chen,
H., Deng, Z., and Zhang, Y. (2020). Biological Gen-
der Estimation from Panoramic Dental X-ray Images
Based on Multiple Feature Fusion Model. Sensing and
Imaging, 21(1):1–11.
Liang, J. S., Cury, P., and Oliveira, L. R. (2023). Revis-
iting age estimation on panoramic dental images. In
2023 36th SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI).
Milo
ˇ
sevi
´
c, D., Vodanovi
´
c, M., Gali
´
c, I., and Suba
ˇ
si
´
c,
M. (2022a). Automated estimation of chronologi-
cal age from panoramic dental x-ray images using
deep learning. Expert Systems with Applications,
189(116038):1–23.
Milo
ˇ
sevi
´
c, D., Vodanovi
´
c, M., Gali
´
c, I., and Suba
ˇ
sI
´
c, M.
(2022b). A comprehensive exploration of neural net-
works for forensic analysis of adult single tooth x-ray
images. IEEE Access, 10:70980–71002.
Pinheiro, L., Silva, B., Sobrinho, B., Lima, F., Cury, P.,
and Oliveira, L. (2021). Numbering permanent and
deciduous teeth via deep instance segmentation in
panoramic x-rays. In Rittner, L., M.D., E. R. C.,
Lepore, N., Brieva, J., and Linguraru, M. G., editors,
17th International Symposium on Medical Informa-
tion Processing and Analysis, volume 12088, pages
1–10. International Society for Optics and Photonics,
SPIE.
Rajee, M. and Mythili, C. (2021). Gender classification on
digital dental x-ray images using deep convolutional
neural network. Biomedical Signal Processing and
Control, 69(102939):1–13.
Silva, B., Pinheiro, L., Oliveira, L., and Pithon, M. (2020).
A study on tooth segmentation and numbering using
end-to-end deep neural networks. In 2020 33rd SIB-
GRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), pages 164–171.
Silva, B. P. M., Pinheiro, L. B., Sobrinho, B. P. P., Lima,
F. P., Sobrinho, B. P. P., Abdalla Buzar Lima, K.,
Pithon, M. M., Cury, P. R., and Oliveira, L. R. d.
(2023). Boosting research on dental panoramic ra-
diographs: a challenging data set, baselines, and a
task central online platform for benchmark. Computer
Methods in Biomechanics and Biomedical Engineer-
ing: Imaging & Visualization, pages 1–21.
Tuzoff, D. V., Tuzova, L. N., Bornstein, M. M., Krasnov,
A. S., Kharchenko, M. A., Nikolenko, S. I., Svesh-
nikov, M. M., and Bednenko, G. B. (2019). Tooth de-
tection and numbering in panoramic radiographs us-
ing convolutional neural networks. Dento maxillo fa-
cial radiology, 48(4):1–10.
Vila-Blanco, N., Carreira, M. J., Varas-Quintana, P., Balsa-
Castro, C., and Tomas, I. (2020). Deep Neural Net-
works for Chronological Age Estimation from OPG
Images. IEEE Transactions on Medical Imaging,
39(7):2374–2384.
Vila-Blanco, N., Varas-Quintana, P.,
´
Angela Aneiros-
Ardao, Tom
´
as, I., and Carreira, M. J. (2022). Xas:
Automatic yet explainable age and sex determination
by combining imprecise per-tooth predictions. Com-
puters in Biology and Medicine, 149:1–10.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
392