
REFERENCES
Alashqar, A. M. (2021). Automatic generation of uml dia-
grams from scenario-based user requirements. Jorda-
nian Journal of Computers and Information Technol-
ogy, 7(02, June 2021).
Apache (2021). Apache opennlp toolkit. https://opennlp.
apache.org. 2021.
Camara, J., Troya, J., Burgueno, L., and Vallecillo, A. (2023).
On the assessment of generative ai in modeling tasks.
SoSyM, 22.
Chen, M. et al. (2021). Evaluating large language models
trained on code. arXiv preprint, 2107:03374v2.
Elallaoui, M., Nafil, K., and Touahni, R. (2018). Auto-
matic transformation of user stories into uml use case
diagrams using nlp techniques. Procedia computer
science, 130:42–49.
Elmasry, I., Wassif, K., and Bayomi, H. (2021). Extract-
ing software design from text: A machine learning
approach. In 2021 Tenth International Conference on
Intelligent Computing and Information Systems (ICI-
CIS), pages 486–492. IEEE.
Ferrari, A., Spagnolo, G. O., and Gnesi, S. (2017). Pure:
A dataset of public requirements documents. In 2017
IEEE 25th International Requirements Engineering
Conference (RE), pages 502–505. IEEE.
GitHub.com (2022). GitHub CoPilot,
https://copilot.github.com/.
Guo, D. et al. (2021). GraphCodeBERT: Pre-training code
representations with dataflow. In ICLR 2021.
Hamza, Z. A. and Hammad, M. (2019). Generating uml
use case models from software requirements using nat-
ural language processing. In 2019 8th International
Conference on Modeling Simulation and Applied Opti-
mization (ICMSAO), pages 1–6. IEEE.
Kaggle (2021). Kaggle software requirements
dataset. https:www.kaggle.com/iamsouvik/
software-requirements-dataset. Accessed: 2021.
Kamarudin, N. J., Sani, N. F. M., and Atan, R. (2015). Auto-
mated transformation approach from user requirement
to behavior design. Journal of Theoretical and Applied
Information Technology, 81(1):73.
Kolahdouz-Rahimi, S., Lano, K., and Chenghua, L. (2023).
Requirement formalisation using natural language pro-
cessing and machine learning: A systematic review.
International Conference on Model-Based Software
and Systems Engineering.
Lano, K. (2023). Requirements formalisation repos-
itory. https:www.https://github.com/kevinlano/
RequirementsFormalisation. Accessed: 2023.
Lano, K., Yassipour-Tehrani, S., and Umar, M. (2021). Au-
tomated requirements formalisation for agile mde. In
2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Compan-
ion (MODELS-C), pages 173–180. IEEE.
Levenshtein, V. I. et al. (1966). Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
physics doklady, 10(8):707–710.
M. Maatuk, A. and A. Abdelnabi, E. (2021). Generating uml
use case and activity diagrams using nlp techniques and
heuristics rules. In International Conference on Data
Science, E-learning and Information Systems 2021,
pages 271–277.
Mendeley (2021). Mendeley user story dataset. https:
www.data.mendeley.com/datasets/bw9md35c29/1. Ac-
cessed: 2021.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Narawita, C. R. et al. (2017). Uml generator-use case and
class diagram generation from text requirements. The
International Journal on Advances in ICT for Emerg-
ing Regions, 10(1).
Otter, D. W., Medina, J. R., and Kalita, J. K. (2023). Require-
ment formalisation using natural language processing
and machine learning: A systematic review. Model-
sward 2023.
Princeton University (2021). Wordnet. https:www.wordnet.
princeton.edu. Accessed: 2021.
Santorini, B. (1990). Part-of-speech tagging guidelines for
the penn treebank project. University of Pennsylvania,
School of Engineering and Applied Science.
Sanyal, R., Ghoshal, B., et al. (2018). Automatic extrac-
tion of structural model from semi structured software
requirement specification. In 2018 IEEE/ACIS 17th In-
ternational Conference on Computer and Information
Science (ICIS), pages 543–58. IEEE.
Sedrakyan, G., Abdi, A., Van Den Berg, S. M., Veldkamp,
B., and Van Hillegersberg, J. (2022). Text-to-model
(tetomo) transformation framework to support require-
ments analysis and modeling. In 10th International
Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2022, pages 129–
136. SCITEPRESS.
Stanford University (2020). Stanford nlp. https:www.https:
//nlp.stanford.edu/software/. Accessed: 2020.
Xu, X., Chen, K., and Cai, H. (2020). Automating utility
permitting within highway right-of-way via a generic
uml/ocl model and natural language processing. Jour-
nal of Construction Engineering and Management,
146(12):04020135.
Zhao, W. et al. (2023). A survey of large language models.
arXiv, 2303.18223v10.
MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering
132