
ACKNOWLEDGEMENTS
This research was funded in part by the Ger-
man Federal Ministry of Education and Research
(BMBF) under the project OptiRetouren (grant num-
ber 01IS22046B). It is a joint project of the August-
Wilhelm Scheer Institut, INTEX, HAIX and h+p.
August-Wilhelm Scheer Institut is mainly entrusted
with conducting research in AI for forecasting returns
volume and for recommendations based on AI.
REFERENCES
Asdecker, B. and Karl, D. (2018). Big data analytics in
returns management-are complex techniques necessary
to forecast consumer returns properly? In 2nd Interna-
tional Conference on Advanced Research Methods and
Analytics. Proceedings, pages 39–46.
Asdecker, B., Karl, D., and Sucky, E. (2017). Examining
drivers of consumer returns in e-tailing with real shop
data. In Hawaii International Conference on System
Sciences, pages 4192–4201.
Bimschleger, C., Patel, K., and Leddy, M. (2019). Bringing
it back: Retailers need a synchronized reverse logistics
strategy. Technical report, Deloitte Development LLC.
Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recog-
nition and machine learning, volume 4. Springer.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discov-
ery and data mining, pages 785–794.
Cui, H., Rajagopalan, S., and Ward, A. R. (2020). Pre-
dicting product return volume using machine learning
methods. European Journal of Operational Research,
281(3):612–627.
Deges, F. (2021). Retourencontrolling im online-handel.
Controlling – Zeitschrift f
¨
ur erfolgsorientierte Un-
ternehmenssteuerung, 2/2021:61–68.
Forschungsgruppe Retourenmanagement (2022).
Ergebnisse des europ
¨
aischen retourentachos
ver
¨
offentlicht. https://www.retourenforschung.de/info-
ergebnisse-des-europaeischen-retourentachos-
veroeffentlicht.html. Online; accessed 2023-01-26.
Gry., S., Niederlaender., M., Lodi., A., Mutz., M., and
Werth., D. (2023). Advances in ai-based garment
returns prediction and processing: A conceptual ap-
proach for an ai-based recommender system. In
Proceedings of the 20th International Conference on
Smart Business Technologies - ICSBT, pages 15–25.
INSTICC, SciTePress.
Heckman, J. J. (1979). Sample selection bias as a specifica-
tion error. Econometrica: Journal of the econometric
society, pages 153–161.
Kuhn, M. and Johnson, K. (2019). Feature engineering and
selection: A practical approach for predictive models.
n taylor & francis group.
Lepthien, A. and Clement, M. (2019). Shipping fee sched-
ules and return behavior. Marketing Letters, 30(2):151–
165.
Makkonen, M., Frank, L., and Kemppainen, T. (2021).
The effects of consumer demographics and payment
method preference on product return frequency and rea-
sons in online shopping. In Bled eConference, pages
567–580. University of Maribor.
Micci-Barreca, D. (2001). A preprocessing scheme for
high-cardinality categorical attributes in classification
and prediction problems. ACM SIGKDD Explorations
Newsletter, 3(1):27–32.
Murphy, K. P. (2018). Machine learning: A probabilistic per-
spective (adaptive computation and machine learning
series). The MIT Press: London, UK.
Pargent, F., Pfisterer, F., Thomas, J., and Bischl, B. (2022).
Regularized target encoding outperforms traditional
methods in supervised machine learning with high car-
dinality features. Computational Statistics, 37(5):2671–
2692.
Sahoo, N., Dellarocas, C., and Srinivasan, S. (2018). The
impact of online product reviews on product returns.
Information Systems Research, 29(3):723–738.
Shehu, E., Papies, D., and Neslin, S. A. (2020). Free shipping
promotions and product returns. Journal of Marketing
Research, 57(4):640–658.
Statista (2023). Fashion ecommerce report
2023. https://www.statista.com/study/38340/
ecommerce-report-fashion/. Online; accessed
2023-08-09.
T
¨
uyl
¨
u, A. N. A. and Ero
˘
glu, E. (2019). Using machine learn-
ing algorithms for forecasting rate of return product
in reverse logistics process. Alphanumeric Journal,
7(1):143–156.
Urbanke, P., Kranz, J., and Kolbe, L. M. (2015). Predict-
ing product returns in e-commerce: The contribution
of mahalanobis feature extraction. In International
Conference on Interaction Sciences, pages 1–19.
Van Heerde, H. J., Gijsbrechts, E., and Pauwels, K. (2005).
Price war: what is it good for? store incidence and
basket size response to the price war in dutch grocery
retailing. Tilburg University, LE Tilburg, The Nether-
lands.
Vogue/BCG (2021). Consumers’ adaption to sus-
tainability in fashion. https://web-assets.bcg.
com/27/f3/794284e7437d99a71d625caf589f/
consumers-adaptation-to-sustainability-in-fashion.
pdf. Online; accessed 2023-08-09.
Yan, R. and Cao, Z. (2017). Product returns, asymmetric
information, and firm performance. International Jour-
nal of Production Economics, 185:211–222.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
164