
C, S., M.Chitradevi, M., and Geetharamani, G. (2012).
Classification of cardiotocogram data using neural
network based machine learning technique. Interna-
tional Journal of Computer Applications, 47(14):19–
25.
Chamidah, N. and Wasito, I. (2015). Fetal state classi-
fication from cardiotocography based on feature ex-
traction using hybrid k-means and support vector ma-
chine. In 2015 International Conference on Advanced
Computer Science and Information Systems (ICAC-
SIS). IEEE.
Chud
´
a
ˇ
cek, V., Spilka, J., Bur
ˇ
sa, M., Jank
˚
u, P., Hruban, L.,
Huptych, M., and Lhotsk
´
a, L. (2014). Open access in-
trapartum CTG database. BMC Pregnancy and Child-
birth, 14(1).
Cicchetti, D. V. (1992). Neural networks and diagnosis in
the clinical laboratory: state of the art. Clinical chem-
istry, 38(1):9–10.
Comert, Z. and Kocamaz, A. (2017). Comparison of ma-
chine learning techniques for fetal heart rate classifi-
cation.
C
¨
omert, Z., Kocamaz, A. F., and G
¨
ung
¨
or, S. (2016). Car-
diotocography signals with artificial neural network
and extreme learning machine. In 2016 24th Signal
Processing and Communication Application Confer-
ence (SIU), pages 1493–1496. Ieee.
de Campos, D. A., Spong, C. Y., and and, E. C. (2015).
FIGO consensus guidelines on intrapartum fetal mon-
itoring: Cardiotocography. International Journal of
Gynecology & Obstetrics, 131(1):13–24.
.ER, A., .T, W., .CRH, W., .O, T., and JE, D. . (2016).
Umbilical lactate as a measure of acidosis and pre-
dictor of neonatal risk: a systematic review. An In-
ternational Journal of Obstetrics and Gynaecology,
124(4):584–594.
Francis, F., Wu, H., Luz, S., Townsend, R., and Stock, S.
(2022). Detecting intrapartum fetal hypoxia from car-
diotocography using machine learning. In 2022 Com-
puting in Cardiology (CinC), volume 498, pages 1–4.
Kadhim, N. J. A. and Abed, J. K. (2020). Enhancing the
prediction accuracy for cardiotocography (CTG) us-
ing firefly algorithm and naive bayesian classifier. IOP
Conference Series: Materials Science and Engineer-
ing, 745(1):012101.
Liang, S. and Li, Q. (2021). Automatic evaluation of fetal
heart rate based on deep learning. In 2021 2nd In-
formation Communication Technologies Conference
(ICTC). IEEE.
Maclin, P. S., Dempsey, J., Brooks, J., and Rand, J. (1991).
Using neural networks to diagnose cancer. Journal of
medical systems, 15(1):11–19.
Nahiduzzaman, M., Nayeem, M. J., Ahmed, M. T., and Za-
man, M. S. U. (2019). Prediction of heart disease us-
ing multi-layer perceptron neural network and support
vector machine. In 2019 4th International Conference
on Electrical Information and Communication Tech-
nology (EICT). IEEE.
NITA, S., BITAM, S., and MELLOUK, A. (2018). An en-
hanced random forest for cardiac diseases identifica-
tion based on ECG signal. In 2018 14th International
Wireless Communications & Mobile Computing Con-
ference (IWCMC). IEEE.
Ogasawara, J., Ikenoue, S., Yamamoto, H., Sato, M.,
Kasuga, Y., Mitsukura, Y., Ikegaya, Y., Yasui, M.,
Tanaka, M., and Ochiai, D. (2021). Deep neural
network-based classification of cardiotocograms out-
performed conventional algorithms. Scientific Re-
ports, 11(1).
Resnik, R., Lockwood, C. J., Moore, T., Greene, M. F.,
Copel, J., and Silver, R. M. (2018). Creasy and
resnik’s maternal-fetal medicine: Principles and
practice. Elsevier, 8 edition.
Rosly, R., Makhtar, M., Awang, M. K., Awang, M. I., Rah-
man, M. N. A., and Mahdin, H. (2018). Compre-
hensive study on ensemble classification for medical
applications. International Journal of Engineering
&Technology, 7(2.14):186.
Sahin, H. and Subasi, A. (2015). Classification of the car-
diotocogram data for anticipation of fetal risks using
machine learning techniques. Applied Soft Comput-
ing, 33:231–238.
Sehgal, A., Allison, B. J., Gwini, S. M., Miller, S. L.,
and Polglase, G. R. (2017). Cardiac morphology and
function in preterm growth restricted infants: Rele-
vance for clinical sequelae. The Journal of Pediatrics,
188:128–134.e2.
Simes, R. J. (1985). Treatment selection for cancer patients:
application of statistical decision theory to the treat-
ment of advanced ovarian cancer. Journal of chronic
diseases, 38(2):171–186.
Sundar, C., Chitradevi, M., and Geetharamani, G. (2012).
Classification of cardiotocogram data using neural
network based machine learning technique. Interna-
tional Journal of Computer Applications, 47(14).
Zhong, M., Yi, H., Lai, F., Liu, M., Zeng, R., Kang, X.,
Xiao, Y., Rong, J., Wang, H., Bai, J., and Lu, Y.
(2022). CTGNet: Automatic analysis of fetal heart
rate from cardiotocograph using artificial intelligence.
Maternal-Fetal Medicine, 4(2):103–112.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
678