
Bianco, S., Capponi, S., and Kaufman, J. H. (2021).
Matematica epidemiologica per COVID-19. Ithaca:
Viaggio nella Scienza, 2021(17b):5–12.
Bourgais, M., Taillandier, P., and Vercounter, L. (2019).
BEN: An Agent Architecture for Explainable and Ex-
pressive Behavior in Social Simulation. In EXTRAA-
MAS, Montreal, Canada.
Chang, S., Pierson, E., Koh, P. W., Gerardin, J., Redbird,
B., Grusky, D., and Leskovec, J. (2021). Mobility net-
work models of COVID-19 explain inequities and in-
form reopening. Nature, 589:82–87.
Chang, S. L., Harding, N., Zachreson, C., Cliff, O. M., and
Prokopenko, M. (2020). Modelling transmission and
control of the COVID-19 pandemic in Australia. Na-
ture Communications, 11(5710).
Daniels, R., Gilbert, S., Kuppusamy, S., Kuempel, E., Park,
R., Pandalai, S., Smith, R., Wheeler, M., Whittaker,
C., and Schulte, P. (2020). Current Intelligence Bul-
letin 69: NIOSH Practices in Occupational Risk As-
sessment. National Institute for Occupational Safety
and Health.
Douglas, J. V., Bianco, S., Edlund, S., Engelhardt, T., Filter,
M., G
¨
unther, T., Hu, K., Nixon, E. J., Sevilla, N. L.,
Swaid, A., et al. (2019). STEM: an open source tool
for disease modeling. Health security, 17(4):291–306.
Duggirala, M., Singh, M., Hayatnagarkar, H., Patel, S., and
Balaraman, V. (2016). Understanding impact of stress
on workplace outcomes using an agent based simula-
tion. In Proceedings of the Summer Computer Simu-
lation Conference, pages 1–10, Montreal, Canada.
Edlund, S. B., Davis, M. A., and Kaufman, J. H. (2010).
The spatiotemporal epidemiological modeler. In Pro-
ceedings of the 1st ACM International Health Infor-
matics Symposium, pages 817–820.
Gopalakrishnan, V., Navalekar, S., Ding, P., Hooley, R.,
Miller, J., Srinivasan, R., Deshpande, A., Liu, X.,
Bianco, S., and Kaufman, J. H. (2021a). Adaptive
Epidemic Forecasting and Community Risk Evalua-
tion of COVID-19. arXiv preprint arXiv:2106.02094.
Gopalakrishnan, V., Pethe, S., Kefayati, S., Srinivasan, R.,
Hake, P., Deshpande, A., Liu, X., Hoang, E., Davila,
M., Bianco, S., et al. (2021b). Globally local: Hyper-
local modeling for accurate forecast of COVID-19.
Epidemics, 37:100510.
Hardy, P., Marcolino, L. S., and Fontanari, J. F. (2021). The
paradox of productivity during quarantine: An agent-
based simulation. The European Physical Journal B,
94(1):40.
Hinch, R., Probert, W. J. M., Nurtay, A., et al. (2021).
OpenABM-Covid19 — An agent-based model for
non-pharmaceutical interventions against COVID-19
including contact tracing. PLOS Computational Biol-
ogy, 17(7):1–26.
Hosseini, P. R., Mills, J. N., Prieur-Richard, A.-H., et al.
(2017). Does the impact of biodiversity differ between
emerging and endemic pathogens? The need to sepa-
rate the concepts of hazard and risk. Philosophical
Transactions of the Royal Society B: Biological Sci-
ences, 372:20160129.
Islam, M. T., Jain, S., Chen, Y., et al. (2022). An Agent-
Based Simulation Model to Evaluate Contacts, Lay-
out, and Policies in Entrance, Exit, and Seating in In-
door Activities Under a Pandemic Situation. IEEE
Transactions on Automation Science and Engineer-
ing, 19(2):603–619.
Kaufman, James H., e. a. (2006-2022). The Eclipse Spa-
tioTemporal Epidemiological Modeler (STEM) web-
site. https://projects.eclipse.org/projects/technology.s
tem/.
Kerr, C. C., Stuart, R. M., Mistry, D., et al. (2021). Co-
vasim: An agent-based model of COVID-19 dynam-
ics and interventions. PLOS Computational Biology,
17(7):1–32.
Kumpulainen, S. (2006). Vulnerability concepts in haz-
ard and risk assessment. In Schmidt-Thome, P., edi-
tor, Natural and Technological Hazards and Risks Af-
fecting the Spatial Development of European Regions,
Special Paper 42, pages 65–74. Geological Survey of
Finland.
Manyam, G., Payton, M. A., Roth, J. A., Abruzzo, L. V.,
and Coombes, K. R. (2012). Relax with CouchDB —
Into the non-relational DBMS era of bioinformatics.
Genomics, 100(1):1–7.
Mu
˜
noz, S. and Iglesias, C. A. (2021). An agent based sim-
ulation system for analyzing stress regulation policies
at the workplace. Journal of Computational Science,
51:101326.
Newell, G. F. (1961). Nonlinear effects in the dynamics of
car following. Operations research, 9(2):209–229.
Sage, A. P. and White, E. B. (1980). Methodologies for risk
and hazard assessment: A survey and status report.
IEEE Transactions on Systems, Man, and Cybernet-
ics, 10(8):425–446.
Shattock, A. J., Le Rutte, E. A., D
¨
unner, R. P., Sen, S.,
Kelly, S. L., Chitnis, N., and Penny, M. A. (2022).
Impact of vaccination and non-pharmaceutical inter-
ventions on SARS-CoV-2 dynamics in Switzerland.
Epidemics, 38:100535.
Taillandier, P., Gaudou, B., Grignard, A., et al. (2018).
Building, composing and experimenting complex spa-
tial models with the GAMA platform. GeoInformat-
ica, 23:299–322.
USAFacts (2020). US Coronavirus Cases and Deaths. https:
//usafacts.org/visualizations/coronavirus-covid-19-s
pread-map. Accessed: 2020-10-04.
Vayghan, L. A., Saied, M. A., Toeroe, M., and Khendek, F.
(2018). Deploying Microservice Based Applications
with Kubernetes: Experiments and Lessons Learned.
In 2018 IEEE 11th international conference on cloud
computing (CLOUD), pages 970–973. IEEE.
Vitins, B. J., Erath, A., and Axhausen, K. W. (2016). Inte-
gration of a Capacity-Constrained Workplace Choice
Model: Recent Developments and Applications with
an Agent-Based Simulation in Singapore. Transporta-
tion Research Record, 2564(1):1–13.
Wang, H., Wang, W., and Chen, J. (2011). General Newell
model and related second-order expressions. Trans-
portation Research Record, 2260(1):42–49.
BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms
428