REFERENCES
Amato, G., Falchi, F., Gennaro, C., and Rabitti, F. (2016).
YFCC100M-HNfc6: A large-scale deep features
benchmark for similarity search. In Proc. SISAP’16,
LNCS 9939, Springer, pages 196–209.
Babenko, A. and Lempitsky, V. (2016). Efficient indexing
of billion-scale datasets of deep descriptors. In Proc.
CVPR’16, IEEE Computer Society, pages 2055–2063.
Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An
efficient access method for similarity search in metric
spaces. In Proc. VLBD’97, pages 426–435.
Dong, W., Charikar, M., and Li, K. (2008). Asymmetric
distance estimation with sketches for similarity search
in high-dimensional spaces. In Proc. ACM SIGIR’08,
pages 123–130.
Guttman, A. (1984). R-trees: A dynamic index structure
for spatial searching. In Yormark, B., editor, Proc.
SIGMOD’84, pages 47–57.
Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., and
Shinohara, T. (2018). Nearest neighbor search using
sketches as quantized images of dimension reduction.
In Proc. ICPRAM’18, pages 356–363.
Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K.,
and Shinohara, T. (2019a). Fast filtering for nearest
neighbor search by sketch enumeration without using
matching. In Proc. AusAI’19, LNCS 11919, Springer,
pages 240–252.
Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., and
Shinohara, T. (2019b). Fast nearest neighbor search
with narrow 16-bit sketch. In Proc. ICPRAM’19,
pages 540–547.
Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., and
Shinohara, T. (2020). Annealing by increasing re-
sampling. In Revised Selected Papers, ICPRAM 2019,
LNCS 11996, Springer, pages 71–92.
Higuchi, N., Imamura, Y., Mic, V., Shinohara, T., Hi-
rata, K., and Kuboyama, T. (2022). Nearest-neighbor
search from large datasets using narrow sketches. In
Proc. ICPRAM’22, pages 401–410.
Imamura, Y., Higuchi, N., Kuboyama, T., Hirata, K., and
Shinohara, T. (2017). Pivot selection for dimension
reduction using annealing by increasing resampling.
In Proc. LWDA’17, pages 15–24.
Lv, Q., Josephson, W., Wang, Z., and and K. Li, M. C.
(2006). Efficient filtering with sketches in the ferret
toolkit. In Proc. MIR’06, pages 279–288.
Mic, V., Novak, D., and Zezula, P. (2015). Improving
sketches for similarity search. In Proc. MEMICS’15,
pages 45–57.
Mic, V., Novak, D., and Zezula, P. (2016). Speeding up sim-
ilarity search by sketches. In Proc. SISAP’16, pages
250–258.
M
¨
uller, A. and Shinohara, T. (2009). Efficient similarity
search by reducing i/o with compressed sketches. In
Proc. SISAP’09, pages 30–38.
Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., and Jitsev, . J. (2022).
LAION-5B: An open large-scale dataset for training
next generation image-text models. In arXiv preprint
arXiv:2210.08402.
Shinohara, T. and Ishizaka, H. (2002). On dimension re-
duction mappings for approximate retrieval of multi-
dimensional data. In Progress of Discovery Science,
LNCS 2281, Springer, pages 89–94.
Simhadri, H. V., Williams, G., Aum
¨
uller, M., Douze, M.,
Babenko, A., Baranchuk, D., Chen, Q., Hosseini, L.,
Krishnaswamy, R., Srinivasa, G., Subramanya, S. J.,
and Wang, J. (2022). Results of the NeurIPS’21 chal-
lenge on billion-scale approximate nearest neighbor
search. CoRR, abs/2205.03763.
Wang, Z., Dong, W., Josephson, W., Q. Lv, M. C., and Li,
K. (2007). Sizing sketches: A rank-based analysis
for similarity search. In Proc. ACM SIGMETRICS’07,
pages 157–168.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
510