
Domas, C. (2018). Hardware backdoors in x86 cpus.
https://i.blackhat.com/us-18/Thu-August-9/us-18-
Domas-God-Mode-Unlocked-Hardware-Backdoors-
In-x86-CPUs-wp.pdf.
Dong, C., Chen, J., Guo, W., and Zou, J. (2019).
A machine-learning-based hardware-trojan detection
approach for chips in the internet of things. In-
ternational Journal of Distributed Sensor Networks,
15(12):1550147719888098.
Dubeuf, J., H
´
ely, D., and Karri, R. (2013). Run-time de-
tection of hardware trojans: The processor protection
unit. In 2013 18th IEEE European Test Symposium
(ETS), pages 1–6.
Duncan, A., Rahman, F., Lukefahr, A., Farahmandi, F., and
Tehranipoor, M. (2019). Fpga bitstream security: A
day in the life. In 2019 IEEE International Test Con-
ference (ITC), pages 1–10.
Ender, M., Swierczynski, P., Wallat, S., Wilhelm, M.,
Knopp, P. M., and Paar, C. (2019). Insights into the
mind of a trojan designer: the challenge to integrate a
trojan into the bitstream. In Proceedings of the 24th
Asia and South Pacific Design Automation Confer-
ence, pages 112–119.
Huang, Z., Wang, Q., Chen, Y., and Jiang, X. (2020). A
survey on machine learning against hardware trojan
attacks: Recent advances and challenges. IEEE Ac-
cess, 8:10796–10826.
Jin, Y., Maniatakos, M., and Makris, Y. (2012). Exposing
vulnerabilities of untrusted computing platforms. In
Proc. Int. Conf. Computer Design, pages 131–134.
Liu, Y., Zhao, Y., He, J., Liu, A., and Xin, R. (2017). Scca:
Side-channel correlation analysis for detecting hard-
ware trojan. In Proc. Int. Conf. Anti-counterfeiting,
Security, and Identification, pages 196–200.
McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for di-
mension reduction. arXiv preprint arXiv:1802.03426.
Nikiema, P. R., Palumbo, A., Aasma, A., Cassano, L., Kri-
tikakou, A., Kulmala, A., Lukkarila, J., Ottavi, M.,
Psiakis, R., and Traiola, M. (2023). Towards depend-
able risc-v cores for edge computing devices. In 2023
IEEE 29th International Symposium on On-Line Test-
ing and Robust System Design (IOLTS), pages 1–7.
Palumbo, A., Cassano, L., Luzzi, B., Hern
´
andez, J. A., Re-
viriego, P., Bianchi, G., and Ottavi, M. (2022). Is your
fpga bitstream hardware trojan-free? machine learn-
ing can provide an answer. Journal of Systems Archi-
tecture, 128:102543.
Palumbo, A., Cassano, L., Reviriego, P., Bianchi, G., and
Ottavi, M. (2021). A lightweight security checking
module to protect microprocessors against hardware
trojan horses. In 2021 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (DFT), pages 1–6.
Potkonjak, M. (2010). Synthesis of trustable ics using un-
trusted cad tools. In Proceedings of the 47th Design
Automation Conference, pages 633–634.
Rostami, M., Koushanfar, F., Rajendran, J., and Karri, R.
(2013). Hardware security: Threat models and met-
rics. In Proc. Int. Conf. Computer-Aided Design,
pages 819–823.
Roy, J. A., Koushanfar, F., and Markov, I. L. (2008). Ex-
tended abstract: Circuit cad tools as a security threat.
In 2008 IEEE International Workshop on Hardware-
Oriented Security and Trust.
Salmani, H. and Tehranipoor, M. (2012). Layout-aware
switching activity localization to enhance hardware
trojan detection. IEEE Trans. Information Forensics
and Security, 7(1):76–87.
Salmani, H. and Tehranipoor, M. (2013). Analyzing circuit
vulnerability to hardware trojan insertion at the behav-
ioral level. In Proc. Int. Symp. Defect and Fault Tol-
erance in VLSI and Nanotechnology Systems, pages
190–195.
Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S., and
Tehranipoor, M. (2017). Benchmarking of hardware
trojans and maliciously affected circuits. Journal of
Hardware and Systems Security, 1(1):85–102.
Shila, D. M., Venugopalan, V., and Patterson, C. D. (2015).
Fides: Enhancing trust in reconfigurable based hard-
ware systems. In 2015 IEEE High Performance Ex-
treme Computing Conference (HPEC), pages 1–7.
Sunkavilli, S., Zhang, Z., and Yu, Q. (2021a). Analysis of
attack surfaces and practical attack examples in open
source fpga cad tools. In 2021 22nd International
Symposium on Quality Electronic Design (ISQED),
pages 504–509.
Sunkavilli, S., Zhang, Z., and Yu, Q. (2021b). New security
threats on fpgas: From fpga design tools perspective.
In 2021 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 278–283.
Tsoutsos, N. G. and Maniatakos, M. (2014). Fabrica-
tion attacks: Zero-overhead malicious modifications
enabling modern microprocessor privilege escalation.
IEEE Trans. Emerging Topics in Computing, 2(1):81–
93.
ˇ
Si
ˇ
sejkovi
´
c, D., Merchant, F., Leupers, R., Ascheid, G., and
Kegreiss, S. (2019). Control-lock: Securing processor
cores against software-controlled hardware trojans. In
Proceedings of the 2019 on Great Lakes Symposium
on VLSI, GLSVLSI ’19, pages 27–32.
Wang, X., Mal-Sarkar, T., Krishna, A., Narasimhan, S., and
Bhunia, S. (2012). Software exploitable hardware tro-
jans in embedded processor. In 2012 IEEE Interna-
tional Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), pages 55–
58. IEEE.
Xiao, K., Nahiyan, A., and Tehranipoor, M. (2016). Secu-
rity rule checking in ic design. Computer, 49(8):54–
61.
Zhang, J. and Qu, G. (2019). Recent attacks and defenses on
fpga-based systems. ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), 12(3):1–24.
Zhang, J., Yuan, F., Wei, L., Liu, Y., and Xu, Q. (2015).
Veritrust: Verification for hardware trust. IEEE Trans.
Computer-Aided Design of Integrated Circuits and
Systems, 34(7):1148–1161.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
724