
REFERENCES
Bitterli, B. (2016). Rendering resources. https://
benedikt-bitterli.me/resources/.
Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi,
M., Lefohn, A., Nowrouzezahrai, D., and Aila, T.
(2017). Interactive reconstruction of monte carlo im-
age sequences using a recurrent denoising autoen-
coder. ACM Trans. Graph., 36(4).
Cohen, J. (1988). Statistical Power Analysis for the Behav-
ioral Sciences. Lawrence Erlbaum Associates, 2nd
edition.
Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007).
G*power 3: A flexible statistical power analysis pro-
gram for the social, behavior, and biomedical sci-
ences. Behavior Research Methods Instruments &
Computers, 39:175–191.
G
¨
unther, T. and Grosch, T. (2015). Consistent Scene Editing
by Progressive Difference Images. Computer Graph-
ics Forum.
Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K.,
Humphreys, G., Zwicker, M., and Jensen, H. W.
(2008). Multidimensional adaptive sampling and re-
construction for ray tracing. ACM Trans. Graph.,
27(3):1–10.
Hart, S. (2006). Nasa-task load index (nasa-tlx); 20 years
later. volume 50.
Hart, S. G. and Staveland, L. E. (1988). Development of
nasa-tlx (task load index): Results of empirical and
theoretical research. In Human Mental Workload, vol-
ume 52 of Advances in Psychology, pages 139–183.
Hasselgren, J., Munkberg, J., Salvi, M., Patney, A., and
Lefohn, A. (2020). Neural temporal adaptive sam-
pling and denoising. Computer Graphics Forum,
39:147–155.
Intel (2019). Open image denoise. https://www.
openimagedenoise.org/.
Kajiya, J. T. (1986). The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150.
Kallweit, S., Clarberg, P., Kolb, C., Davidovi
ˇ
c, T., Yao,
K.-H., Foley, T., He, Y., Wu, L., Chen, L., Akenine-
M
¨
oller, T., Wyman, C., Crassin, C., and Benty, N.
(2022). The Falcor rendering framework. https:
//github.com/NVIDIAGameWorks/Falcor.
Kuznetsov, A., Kalantari, N. K., and Ramamoorthi, R.
(2018). Deep adaptive sampling for low sample count
rendering. Computer Graphics Forum, 37.
Mitchell, D. P. (1987). Generating antialiased images at
low sampling densities. SIGGRAPH Comput. Graph.,
21(4):65–72.
Murakami, K. and Hirota, K. (1992). Incremental Ray Trac-
ing, pages 17–32. Springer Berlin Heidelberg.
Myrodia, V. (2021). Psychophysical studies on Monte Carlo
rendering-noise visual perception. PhD thesis.
Nvidia (2018). NVIDIA TURING GPU ARCHITEC-
TURE. Technical report.
NVIDIA (2021). Nvidia real-time denoisers. https://
developer.nvidia.com/rtx/ray-tracing/rt-denoisers.
Overbeck, R. S., Donner, C., and Ramamoorthi, R. (2009).
Adaptive wavelet rendering. ACM Trans. Graph.,
28(5):1–12.
Parsec Cloud Inc. Parsec. https://parsec.app/.
Pharr, M., Jakob, W., and Humphreys, G. (2016). Physi-
cally Based Rendering: From Theory to Implementa-
tion. Morgan Kaufmann Pub. Inc., 3rd edition.
Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K.,
and Carli, M. (2011). Modified image visual quality
metrics for contrast change and mean shift account-
ing. In The Experience of Designing and Application
of CAD Systems in Microelectronics, pages 305–311.
Ponomarenko, N., Silvestri, F., Egiazarian, K., Carli, M.,
Astola, J., and Lukin, V. (2007). On between-
coefficient contrast masking of dct basis functions.
Proc. of the 3rd Int. Workshop on Video Processing
and Quality Metrics for Consumer Electronics.
Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. (2022). Robust speech recogni-
tion via large-scale weak supervision.
Rousselle, F., Jarosz, W., and Nov
´
ak, J. (2016). Image-
space control variates for rendering. ACM Trans.
Graph., 35(6).
Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chai-
tanya, C. R. A., Burgess, J., Liu, S., Dachsbacher,
C., Lefohn, A., and Salvi, M. (2017). Spatiotempo-
ral variance-guided filtering: Real-time reconstruction
for path-traced global illumination. In Proc. of High
Performance Graphics. ACM.
Schied, C., Peters, C., and Dachsbacher, C. (2018). Gra-
dient estimation for real-time adaptive temporal filter-
ing. Proc. ACM Comput. Graph. Interact. Tech., 1(2).
Schmidt, T.-W., Pellacini, F., Nowrouzezahrai, D., Jarosz,
W., and Dachsbacher, C. (2014). State of the art in
artistic editing of appearance, lighting, and material.
Computer Graphics Forum, 35.
South, L., Saffo, D., Vitek, O., Dunne, C., and Borkin,
M. A. (2022). Effective Use of Likert Scales in Vi-
sualization Evaluations: A Systematic Review. CGF.
Thomas, M. M., Liktor, G., Peters, C., Kim, S.,
Vaidyanathan, K., and Forbes, A. G. (2022). Tempo-
rally stable real-time joint neural denoising and super-
sampling. Proc. ACM Comput. Graph. Interact. Tech.,
5(3).
Ulschmid, A., Kerbl, B., Kr
¨
osl, K., and Wim-
mer, M. (2023). https://github.com/cg-tuwien/
Prioritized-ReRendering.
Wyman, C. and Panteleev, A. (2021). Rearchitecting spa-
tiotemporal resampling for production. In High-
Performance Graphics - Symposium Papers. The Eu-
rographics Association.
Zhdan, D. (2021). Reblur: A hierarchical recurrent de-
noiser. In Ray Tracing Gems II, pages 823–844.
Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ra-
mamoorthi, R., Rousselle, F., Sen, P., Soler, C., and
Yoon, S.-E. (2015). Recent advances in adaptive sam-
pling and reconstruction for monte carlo rendering.
Comput. Graph. Forum, 34(2):667–681.
Real-Time Editing of Path-Traced Scenes with Prioritized Re-Rendering
57