
Infarct Age, and Contractile Function. Circulation,
100(19):1992–2002.
Kim, R. J. and Manning, W. J. (2004). Viability Assess-
ment by Delayed Enhancement Cardiovascular Mag-
netic Resonance: Will Low-dose Dobutamine Dull the
Shine? Circulation, 109(21):2476–2479.
Kingma, D. P. and Ba, J. L. (2015). Adam: A Method for
Stochastic Optimization. In Proceedings of the Inter-
national Conference on Learning Representations.
Laine, S. and Aila, T. (2016). Temporal Ensembling for
Semi-Supervised Learning. In Proceedings of the In-
ternational Conference on Learning Representations.
Lalande, A., Chen, Z., Pommier, T., Decourselle, T.,
Qayyum, A., Salomon, M., Ginhac, D., Skan-
darani, Y., Boucher, A., Brahim, K., et al. (2022).
Deep Learning Methods for Automatic Evaluation
of Delayed Enhancement-MRI. The Results of the
EMIDEC Challenge. Medical Image Analysis,
79:102428.
Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Recti-
fier Nonlinearities Improve Neural Network Acoustic
Models. In Proceedings of the International Confer-
ence on Machine Learning, volume 30, page 3. At-
lanta, GA.
Moccia, S., Banali, R., Martini, C., Muscogiuri, G., Pon-
tone, G., Pepi, M., and Caiani, E. G. (2019). Develop-
ment and Testing of a Deep Learning-based Strategy
for Scar Segmentation on CMR-LGE Images. Mag-
netic Resonance Materials in Physics, Biology and
Medicine, 32:187–195.
Payer, C.,
ˇ
Stern, D., Bischof, H., and Urschler, M. (2017).
Multi-label Whole Heart Segmentation using CNNs
and Anatomical Label Configurations. In Interna-
tional Workshop on Statistical Atlases and Computa-
tional Models of the Heart, pages 190–198. Springer.
Payer, C.,
ˇ
Stern, D., Bischof, H., and Urschler, M. (2019).
Integrating Spatial Configuration into Heatmap Re-
gression based CNNs for Landmark Localization.
Medical Image Analysis, 54:207–219.
Payer, C.,
ˇ
Stern, D., Bischof, H., and Urschler, M. (2020).
Coarse to Fine Vertebrae Localization and Segmenta-
tion with SpatialConfiguration-Net and U-Net. In 15th
International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applica-
tions (VISIGRAPP 2020) - Volume 5: VISAPP, pages
124–133.
Perin, E. C., Silva, G. V., Sarmento-Leite, R., Sousa, A. L.,
Howell, M., Muthupillai, R., Lambert, B., Vaughn,
W. K., and Flamm, S. D. (2002). Assessing My-
ocardial Viability and Infarct Transmurality with Left
Ventricular Electromechanical Mapping in Patients
with Stable Coronary Artery Disease: Validation by
Delayed-Enhancement Magnetic Resonance Imaging.
Circulation, 106(8):957–961.
Rios-Navarro, C., Marcos-Garces, V., Bayes-Genis, A.,
Husser, O., Nunez, J., and Bodi, V. (2019). Mi-
crovascular Obstruction in ST-segment Elevation My-
ocardial Infarction: Looking Back to Move For-
ward. Focus on CMR. Journal of Clinical Medicine,
8(11):1805.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. In Proceedings of the International Con-
ference on Medical Image Computing and Computer-
Assisted Intervention, pages 234–241.
Rosenthal, M. E., Oseran, D. S., Gang, E., and Peter,
T. (1985). Sudden Cardiac Death following Acute
Myocardial Infarction. American Heart Journal,
109(4):865–876.
Schinkel, A. F., Poldermans, D., Elhendy, A., and Bax,
J. J. (2007). Assessment of Myocardial Viability
in Patients with Heart Failure. Journal of Nuclear
Medicine, 48(7):1135–1146.
Selvanayagam, J. B., Kardos, A., Francis, J. M., Wiesmann,
F., Petersen, S. E., Taggart, D. P., and Neubauer,
S. (2004). Value of Delayed-enhancement Cardio-
vascular Magnetic Resonance Imaging in Predicting
Myocardial Viability after Surgical Revascularization.
Circulation, 110(12):1535–1541.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A Sim-
ple Way to Prevent Neural Networks from Overfit-
ting. The Journal of Machine Learning Research,
15(1):1929–1958.
Van der Wall, E., Vliegen, H., De Roos, A., and Bruschke,
A. (1996). Magnetic Resonance Techniques for As-
sessment of Myocardial Viability. Journal of Cardio-
vascular Pharmacology, 28:37–44.
Walpot, J., Juneau, D., Massalha, S., Dwivedi, G., Rybicki,
F. J., Chow, B. J., and In
´
acio, J. R. (2019). Left Ven-
tricular Mid-diastolic Wall Thickness: Normal Values
for Coronary CT Angiography. Radiology: Cardio-
thoracic Imaging, 1(5):e190034.
Wroblewski, L. C., Aisen, A. M., Swanson, S. D., and
Buda, A. J. (1990). Evaluation of Myocardial Vi-
ability following Ischemic and Reperfusion Injury
using Phosphorus 31 Nuclear Magnetic Resonance
Spectroscopy in Vivo. American Heart Journal,
120(1):31–39.
Xu, C., Wang, Y., Zhang, D., Han, L., Zhang, Y., Chen,
J., and Li, S. (2022). BMAnet: Boundary Mining
with Adversarial Learning for Semi-supervised 2D
Myocardial Infarction Segmentation. IEEE Journal
of Biomedical and Health Informatics, 27(1):87–96.
Xu, C., Xu, L., Gao, Z., Zhao, S., Zhang, H., Zhang, Y., Du,
X., Zhao, S., Ghista, D., Liu, H., et al. (2018). Direct
Delineation of Myocardial Infarction without Contrast
Agents using a Joint Motion Feature Learning Archi-
tecture. Medical Image Analysis, 50:82–94.
Zabihollahy, F., White, J. A., and Ukwatta, E. (2018). My-
ocardial Scar Segmentation from Magnetic Resonance
Images using Convolutional Neural Network. In Med-
ical Imaging 2018: Computer-Aided Diagnosis, vol-
ume 10575, pages 663–670. SPIE.
Zhang, Y. (2021). Cascaded Convolutional Neural Network
for Automatic Myocardial Infarction Segmentation
from Delayed-enhancement Cardiac MRI. In Interna-
tional Workshop on Statistical Atlases and Computa-
tional Models of the Heart, pages 328–333. Springer.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
64