
vMixer (Trockman and Kolter, 2022) and ResNet-
101 (He et al., 2016a). However, the performance
in these cases was worse than our reported results.
To know the impact of individual loss and a com-
bination of losses, we performed extensive exper-
iments. Through comprehensive experiments, we
discovered that Minimum Class Confusion (MCC)
loss functions offer an enhancement to classifica-
tion models by mitigating class confusion, particu-
larly when faced with imbalanced class distributions.
In parallel, we observed that information maximiza-
tion losses aid the classifier in selecting the most cer-
tain samples for domain alignment. In our proposed
approach, the Pseudo Label Maximum Mean Dis-
crepancy (PLMMD) accelerates training convergence
(comparison with CHATTY model) and notably en-
hances domain alignment by incorporating weighted
considerations. Additionally, the Maximum Mean
Discrepancy (MMD) loss effectively narrows the gap
between the mean embeddings of the two distribu-
tions. By artfully combining these distinctive loss
functions, we not only surpass the current state-of-
the-art but also achieve a comprehensive solution that
advances the field of classification models in diverse
scenarios.
REFERENCES
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. (2010). A theory of
learning from different domains. Machine Learning,
79:151–175.
Borkowski, A. A., Bui, M. M., Thomas, L. B., Wilson, C. P.,
DeLand, L. A., and Mastorides, S. M. Lc25000 lung
and colon histopathological image dataset.
Chen, C., Xie, W., Huang, W., Rong, Y., Ding, X., Huang,
Y., Xu, T., and Huang, J. (2019a). Progressive fea-
ture alignment for unsupervised domain adaptation.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 627–636.
Chen, X., Wang, S., Long, M., and Wang, J. (2019b). Trans-
ferability vs. discriminability: Batch spectral penal-
ization for adversarial domain adaptation. In Chaud-
huri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 1081–1090. PMLR.
Cui, S., Wang, S., Zhuo, J., Su, C., and Tian, Q. (2020).
Gradually vanishing bridge for adversarial domain
adaptation. pages 12452–12461.
De Vente, C., Vermeer, K., Jaccard, N., Wang, H., Sun, H.,
Khader, F., Truhn, D., Aimyshev, T., Zhanibekuly, Y.,
Le, T.-D., Galdran, A., Ballester, M., Carneiro, G.,
Devika, R., Hrishikesh, P., Puthussery, D., Liu, H.,
Yang, Z., Kondo, S., Kasai, S., Wang, E., Durvasula,
A., Heras, J., Zapata, M., Araujo, T., Aresta, G., Bo-
gunovic, H., Arikan, M., Lee, Y., Cho, H., Choi, Y.,
Qayyum, A., Razzak, I., Van Ginneken, B., Lemij, H.,
and Sanchez, C. (2023). Airogs: Artificial intelligence
for robust glaucoma screening challenge.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.
Ganin, Y. and Lempitsky, V. (2015). Unsupervised do-
main adaptation by backpropagation. In International
conference on machine learning, pages 1180–1189.
PMLR.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P.,
Larochelle, H., Laviolette, F., March, M., and Lem-
pitsky, V. (2016). Domain-adversarial training of neu-
ral networks. Journal of machine learning research,
17(59):1–35.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K., editors, Advances in Neural Infor-
mation Processing Systems, volume 27. Curran Asso-
ciates, Inc.
Gretton, A., Borgwardt, K. M., Rasch, M. J., Sch
¨
olkopf,
B., and Smola, A. (2012). A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723–
773.
He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Javed, S., Mahmood, A., Werghi, N., Benes, K., and Ra-
jpoot, N. (2020). Multiplex cellular communities in
multi-gigapixel colorectal cancer histology images for
tissue phenotyping. 29:9204–9219.
Jin, Y., Wang, X., Long, M., and Wang, J. (2020). Minimum
class confusion for versatile domain adaptation. In
Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XXI 16, pages 464–480. Springer.
Kang, G., Zheng, L., Yan, Y., and Yang, Y. (2018). Deep ad-
versarial attention alignment for unsupervised domain
adaptation: The benefit of target expectation maxi-
mization. In Computer Vision – ECCV 2018: 15th Eu-
ropean Conference, Munich, Germany, September 8-
14, 2018, Proceedings, Part XI, page 420–436, Berlin,
Heidelberg. Springer-Verlag.
Kather, J. N., Halama, N., and Marx, A. (2018). 100,000
histological images of human colorectal cancer and
healthy tissue.
Krause, A., Perona, P., and Gomes, R. (2010). Discrimina-
tive clustering by regularized information maximiza-
tion. In Lafferty, J., Williams, C., Shawe-Taylor, J.,
Zemel, R., and Culotta, A., editors, Advances in Neu-
Unsupervised Domain Adaptation for Medical Images with an Improved Combination of Losses
213