Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Einfalt, M., Dampeyrou, C., Zecha, D., and Lienhart, R.
(2019). Frame-level event detection in athletics videos
with pose-based convolutional sequence networks. In
Proceedings Proceedings of the 2nd International
Workshop on Multimedia Content Analysis in Sports,
pp.42-50.
Fani, M., Neher, H., Clausi, D. A., Wong, A., and Zelek, J.
(2017). Hockey action recognition via integrated
stacked hourglass network. In Proceedings of the IEEE
conference on computer vision and pattern recognition
workshops, pp.29-37.
Gavrilyuk, K., Sanford, R., Javan, M., and Snoek, C. G.
(2020). Actor-transformers for group activity
recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pp.839-848.
Gerats, B. G. A. (2020). Individual action and group
activity recognition in soccer videos. Master's thesis,
University of Twente.
Guo, J., Liu, H., Li, X., Xu, D., and Zhang, Y. (2021). An
attention enhanced spatial–temporal graph
convolutional LSTM network for action recognition in
karate. Applied Sciences, vol.11, no.18, article no.8641.
Hochreiter, S., and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, vol.9, no.8,
pp.1735-1780.
Ibh, M., Grasshof, S., Witzner, D., and Madeleine, P.
(2023). TemPose: A New Skeleton-Based Transformer
Model Designed for Fine-Grained Motion Recognition
in Badminton. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pp.5198-5207.
Japan Sumo Association. (2023). 82 kimarite. Nihon Sumo
Kyokai Official Grand Sumo Home Page, Available at:
https://www.sumo.or.jp/Kimarite (Accessed: 10
October 2023).
Kulkarni, K. M., and Shenoy, S. (2021). Table tennis stroke
recognition using two-dimensional human pose
estimation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp.4576-4584.
Li, B., and Sezan, M. I. (2001). Event detection and
summarization in sports video. In Proceedings IEEE
workshop on content-based access of image and video
libraries (CBAIVL 2001), pp.132-138. IEEE.
Liang, J., and Zuo, G. (2022). Taekwondo Action
Recognition Method Based on Partial Perception
Structure Graph Convolution Framework. Scientific
Programming, vol.2022, Article ID 1838468.
Liu, R., Liu, Z., and Liu, S. (2021). Recognition of
basketball player’s shooting action based on the
convolutional neural network. Scientific Programming,
vol.2021, Article ID 3045418.
Liu, S., Liu, X., Huang, G., Feng, L., Hu, L., Jiang, D.,
Zhang, A., Liu, Y., and Qiao, H. (2020). FSD-10: a
dataset for competitive sports content analysis. arXiv
preprint arXiv:2002.03312.
Liu, S., Zhang, A., Li, Y., Zhou, J., Xu, L., Dong, Z., and
Zhang, R. (2021). Temporal segmentation of fine-
gained semantic action: A motion-centered figure
skating dataset. In Proceedings of the AAAI conference
on artificial intelligence, vol.35, no.3, pp.2163-2171.
Ludwig, K., Einfalt, M., and Lienhart, R. (2020). Robust
estimation of flight parameters for ski jumpers. In 2020
IEEE International Conference on Multimedia & Expo
Workshops (ICMEW), pp.1-6. IEEE.
Luo, C., Kim, S. W., Park, H. Y., Lim, K., and Jung, H.
(2023). Agnostic Taekwondo Action Recognition
Using Synthesized Two-Dimensional Skeletal Datasets.
Sensors, vol.23, no.19, p.8049.
Mottaghi, A., Soryani, M., and Seifi, H. (2020). Action
recognition in freestyle wrestling using silhouette-
skeleton features. Engineering Science and Technology,
an International Journal, vol.23, no.4, pp.921-930.
Neher, H., Vats, K., Wong, A., and Clausi, D. A. (2018).
Hyperstacknet: A hyper stacked hourglass deep
convolutional neural network architecture for joint
player and stick pose estimation in hockey. In 2018 15th
Conference on Computer and Robot Vision (CRV), pp.
313-320. IEEE.
NHK (Japan Broadcasting Corporation). (2023). Movies of
Grand Sumo, NHK Sports, Available at:
https://www3.nhk.or.jp/sports/special/sumomovies
(Accessed: 10 October 10, 2023)
Rangasamy, K., As’ari, M. A., Rahmad, N. A., and Ghazali,
N. F. (2020). Hockey activity recognition using pre-
trained deep learning model. ICT Express, vol.6, no.3,
pp.170-174.
Shi, L., Zhang, Y., Cheng, J., and Lu, H. (2019). Two-
stream adaptive graph convolutional networks for
skeleton-based action recognition. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pp.12026-12035.
Vainstein, J., Manera, J. F., Negri, P., Delrieux, C., and
Maguitman, A. (2014). Modeling video activity with
dynamic phrases and its application to action
recognition in tennis videos. In Progress in Pattern
Recognition, Image Analysis, Computer Vision, and
Applications: 19th Iberoamerican Congress, CIARP
2014, pp.909-916, Springer.
Vats, K., Neher, H., Clausi, D. A., and Zelek, J. (2019).
Two-stream action recognition in ice hockey using
player pose sequences and optical flows. In 2019 16th
Conference on computer and robot vision (CRV),
pp.181-188. IEEE.
Zakharchenko, I. (2020). Basketball Pose-Based Action
Recognition. Ukrainian Catholic University, Faculty of
Applied Sciences: L’viv.