![](bga.png)
cading Residual Network. In 15th European Con-
ference on Computer Vision, page 256–272, Munich,
Germany. Springer-Verlag.
Bhat, G., Danelljan, M., Van Gool, L., and Timofte, R.
(2021a). Deep Burst Super-Resolution. In IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 9209–9218.
Bhat, G., Danelljan, M., Yu, F., Gool, L. V., and Timofte,
R. (2021b). Deep Reparametrization of Multi-Frame
Super-Resolution and Denoising. In IEEE/CVF In-
ternational Conference on Computer Vision, pages
2440–2450, Los Alamitos, CA, USA. IEEE Computer
Society.
Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet,
D., and Barron, J. T. (2018). Unprocessing Images
for Learned Raw Denoising. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11028–11037.
Chan, K. K., Zhou, S., Xu, X., and Loy, C. (2022). Ba-
sicVSR++: Improving Video Super-Resolution with
Enhanced Propagation and Alignment. In IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, volume 1, pages 5962–5971, Los Alamitos, CA,
USA. IEEE Computer Society.
Cilia, M., Valsesia, D., Fracastoro, G., and Magli, E. (2023).
Multi-Level Fusion for Burst Super-Resolution with
Deep Permutation-Invariant Conditioning. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, volume 1, pages 1–5.
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and
Wei, Y. (2017). SimDeformable Convolutional Net-
works. In IEEE International Conference on Com-
puter Vision.
Dai, T., Cai, J., Zhang, Y., Xia, S.-T., and Zhang, L. (2019).
Second-Order Attention Network for Single Image
Super-Resolution. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, volume 1, pages
11057–11066.
Deudon, M., Kalaitzis, A., Goytom, I., Arefin, M. R.,
Lin, Z., Sankaran, K., Michalski, V., Kahou, S. E.,
Cornebise, J., and Bengio, Y. (2020). HighRes-Net:
Recursive Fusion for Multi-Frame Super-Resolution
of Satellite Imagery.
Dong, C., Loy, C. C., He, K., and Tang, X. (2015). Im-
age Super-Resolution Using Deep Convolutional Net-
works.
Dudhane, A., Zamir, S., Khan, S., Khan, F., and Yang, M.
(2022). Burst Image Restoration and Enhancement. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, volume 1, pages 5749–5758, Los
Alamitos, CA, USA. IEEE Computer Society.
Dudhane, A., Zamir, S., Khan, S., Khan, F., and Yang, M.
(2023). Burstormer: Burst Image Restoration and En-
hancement Transformer. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, volume 1,
pages 5703–5712, Los Alamitos, CA, USA. IEEE
Computer Society.
Hardie, R. (2008). A Fast Image Super-Resolution Algo-
rithm Using an Adaptive Wiener Filter. IEEE Trans-
actions on Image Processing, 16:2953–64.
Haris, M., Shakhnarovich, G., and Ukita, N. (2018). Deep
Back-Projection Networks for Super-Resolution. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, volume 1, pages 1664–1673, Los
Alamitos, CA, USA. IEEE Computer Society.
Ignatov, A., Gool, L. V., and Timofte, R. (2020). Replac-
ing Mobile Camera ISP with a Single Deep Learning
Model. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, volume 1, pages
2275–2285, Los Alamitos, CA, USA. IEEE Computer
Society.
Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Percep-
tual Losses for Real-Time Style Transfer and Super-
Resolution. In Leibe, B., Matas, J., Sebe, N., and
Welling, M., editors, European Conference on Com-
puter Vision, pages 694–711, Cham. Springer Interna-
tional Publishing.
Kim, J., Lee, J. K., and Lee, K. M. (2016a). Accurate Im-
age Super-Resolution Using Very Deep Convolutional
Networks. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 1646–1654.
Kim, J., Lee, J. K., and Lee, K. M. (2016b). Deeply-
Recursive Convolutional Network for Image Super-
Resolution. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 1637–1645.
Lafenetre, J., Facciolo, G., and Eboli, T. (2023). Imple-
menting Handheld Burst Super-Resolution. Image
Processing On Line, 13:227–257.
Lai, W.-S., Huang, J.-B., Ahuja, N., and Yang, M.-H.
(2017). Deep Laplacian Pyramid Networks for Fast
and Accurate Super-Resolution. In IEEE Conference
on Computer Vision and Pattern Recognition, vol-
ume 1, pages 5835–5843.
Lecouat, B., Ponce, J., and Mairal, J. (2021). Lucas-Kanade
Reloaded: End-to-End Super-Resolution from Raw
Image Bursts. In IEEE/CVF International Conference
on Computer Vision, volume 1, pages 2350–2359, Los
Alamitos, CA, USA. IEEE Computer Society.
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., and Shi, W. (2017). Photo-Realistic Single Im-
age Super-Resolution Using a Generative Adversarial
Network. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 105–114,
Los Alamitos, CA, USA. IEEE Computer Society.
Lim, B., Son, S., Kim, H., Nah, S., and Lee, K. M. (2017).
Enhanced Deep Residual Networks for Single Image
Super-Resolution. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, volume 1,
pages 1132–1140.
Lu, Z. and Chen, Y. (2019). Single Image Super Resolution
based on a Modified U-Net with Mixed Gradient Loss.
CoRR, abs/1911.09428.
Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., and Zeng,
T. (2022). Transformer for Single Image Super-
Resolution. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, volume 1,
pages 456–465, Los Alamitos, CA, USA. IEEE Com-
puter Society.
Lugmayr, A., Danelljan, M., Van Gool, L., and Timofte,
R. (2020). SRFlow: Learning the Super-Resolution
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
86