
Bastani, H., Zhang, D., & Zhang, H. (2020). Applied
Machine Learning in Operations Management. SSRN
Electronic Journal. https://doi.org/10.2139/ssrn.3736
466
Evans, J. M., Qiu, M., MacKinnon, M., Green, E., Peterson,
K., & Kaizer, L. (2016). A multi-method review of
home-based chemotherapy. In European journal of
cancer care (Vol. 25, Issue 5). https://doi.org/10.1111/
ecc.12408
Gupta, S., Starr, M. K., Farahani, R. Z., & Asgari, N.
(2021). OM Forum—Pandemics/Epidemics: Challenges
and Opportunities for Operations Management Research.
https://doi.org/10.1287/msom.2021.0965, 24(1), 1–23.
https://doi.org/10.1287/MSOM.2021.0965
Hadid, M., Elomri, A., El Mekkawy, T., Jouini, O.,
Kerbache, L., & Hamad, A. (2021). Operations
Management of Outpatient Chemotherapy Process: An
Optimization-Oriented Comprehensive Review.
Operations Research Perspectives, 100214.
Hadid, M., Elomri, A., El Mekkawy, T., Kerbache, L., El
Omri, A., El Omri, H., Taha, R. Y., Hamad, A. A., &
Al Thani, M. H. J. (2022). Bibliometric analysis of
cancer care operations management: current status,
developments, and future directions. Health Care
Management Science, 1–20.
Houts, P. S., Lipton, A., Harvey, H. A., Martin, B.,
Simmonds, M. A., Dixon, R. H., Longo, S., Andrews,
T., Gordon, R. A., Meloy, J., & Hoffman, S. L. (1984).
Nonmedical costs to patients and their families
associated with outpatient chemotherapy. Cancer,
53(11). https://doi.org/10.1002/1097-0142(19840601)
53:11<2388::AID-CNCR2820531103>3.0.CO;2-A
Lamé, G., Jouini, O., & Stal-Le Cardinal, J. (2016).
Outpatient chemotherapy planning: A literature review
with insights from a case study. IIE Transactions on
Healthcare Systems Engineering, 6(3), 127–139.
https://doi.org/10.1080/19488300.2016.1189469
Mandelbaum, A., Momčilović, P., Trichakis, N., Kadish,
S., Leib, R., & Bunnell, C. A. (2019). Data-Driven
Appointment-Scheduling Under Uncertainty: The Case
of an Infusion Unit in a Cancer Center.
Https://Doi.Org/10.1287/Mnsc.2018.3218, 66(1), 243–
270. https://doi.org/10.1287/MNSC.2018.3218
Mosa, A. S. M., Rana, M. K. Z., Islam, H., Mosharraf
Hossain, A. K. M., & Yoo, I. (2021). A smartphone-
based decision support tool for predicting patients at
risk of chemotherapy-induced nausea and vomiting:
Retrospective study on app development using decision
tree induction. JMIR MHealth and UHealth, 9(12).
https://doi.org/10.2196/27024
Pianykh, O. S., Guitron, S., Parke, D., Zhang, C.,
Pandharipande, P., Brink, J., & Rosenthal, D. (2020).
Improving healthcare operations management with
machine learning. Nature Machine Intelligence, 2(5).
https://doi.org/10.1038/s42256-020-0176-3
Simchi-Levi, D. (2013). OM Forum—OM Research: From
Problem-Driven to Data-Driven Research.
https://doi.org/10.1287/msom.2013.0471, 16(1), 2–10.
https://doi.org/10.1287/MSOM.2013.0471
Smith, M., & Carlson, J. (2021). Reducing ED Visits and
Hospital Admissions after Chemotherapy with
Predictive Modeling of Risk Factors. Oncology Issues,
36(4). https://doi.org/10.1080/10463356.2021.1927638
Waller, A., Forshaw, K., Bryant, J., & Mair, S. (2014).
Interventions for preparing patients for chemotherapy
and radiotherapy: A systematic review. In Supportive
Care in Cancer (Vol. 22, Issue 8).
https://doi.org/10.1007/s00520-014-2303-3
HEALTHINF 2024 - 17th International Conference on Health Informatics
384