
(xai). In Case-Based Reasoning Research and Devel-
opment: 28th International Conference, ICCBR 2020,
Salamanca, Spain, June 8–12, 2020, Proceedings 28,
pages 163–178. Springer.
Lash, M. T., Lin, Q., Street, N., Robinson, J. G., and
Ohlmann, J. (2017). Generalized inverse classifica-
tion. In Proceedings of the 2017 SIAM International
Conference on Data Mining, pages 162–170. SIAM.
Le, T., Wang, S., and Lee, D. (2020). Grace: generating
concise and informative contrastive sample to explain
neural network model’s prediction. In Proceedings
of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 238–
248.
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. Advances in Neural
Information Processing Systems, 30:4765–4774.
Mahajan, D., Tan, C., and Sharma, A. (2019). Pre-
serving causal constraints in counterfactual explana-
tions for machine learning classifiers. arXiv preprint
arXiv:1912.03277.
Molnar, C. (2022). Interpretable Machine Learning. 2 edi-
tion.
Mothilal, R. K., Sharma, A., and Tan, C. (2020). Explain-
ing machine learning classifiers through diverse coun-
terfactual explanations. In Proceedings of the 2020
Conference on Fairness, Accountability, and Trans-
parency, pages 607–617.
Naumann, P. and Ntoutsi, E. (2021). Consequence-aware
sequential counterfactual generation. In Machine
Learning and Knowledge Discovery in Databases. Re-
search Track: European Conference, ECML PKDD
2021, Bilbao, Spain, September 13–17, 2021, Pro-
ceedings, Part II 21, pages 682–698. Springer.
Pawelczyk, M., Broelemann, K., and Kasneci, G. (2020).
Learning model-agnostic counterfactual explanations
for tabular data. In Proceedings of the Web Conference
2020, pages 3126–3132.
Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T.,
and Flach, P. (2020). Face: feasible and actionable
counterfactual explanations. In Proceedings of the
2020 AAAI/ACM Conference on AI, Ethics, and So-
ciety, pages 344–350.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why
should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 1135–1144.
Samoilescu, R.-F., Van Looveren, A., and Klaise, J. (2021).
Model-agnostic and scalable counterfactual explana-
tions via reinforcement learning. arXiv preprint
arXiv:2106.02597.
Schleich, M., Geng, Z., Zhang, Y., and Suciu, D. (2021).
Geco: Quality counterfactual explanations in real
time. arXiv preprint arXiv:2101.01292.
Schut, L., Key, O., Mc Grath, R., Costabello, L., Sacaleanu,
B., Gal, Y., et al. (2021). Generating interpretable
counterfactual explanations by implicit minimisation
of epistemic and aleatoric uncertainties. In Proceed-
ings of the 2021 International Conference on Artificial
Intelligence and Statistics, pages 1756–1764. PMLR.
Sharma, S., Henderson, J., and Ghosh, J. (2019). Certi-
fai: Counterfactual explanations for robustness, trans-
parency, interpretability, and fairness of artificial in-
telligence models. arXiv preprint arXiv:1905.07857.
Van Looveren, A. and Klaise, J. (2021). Interpretable
counterfactual explanations guided by prototypes. In
Proceedings of the 2021 Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 650–665. Springer.
Van Looveren, A., Klaise, J., Vacanti, G., and Cobb, O.
(2021). Conditional generative models for counterfac-
tual explanations. arXiv preprint arXiv:2101.10123.
Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dick-
erson, J. P., and Shah, C. (2020). Counterfactual
explanations and algorithmic recourses for machine
learning: A review. arXiv preprint arXiv:2010.10596.
Verma, S., Hines, K., and Dickerson, J. P. (2022). Amor-
tized generation of sequential algorithmic recourses
for black-box models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 8512–8519.
Vo, V., Le, T., Nguyen, V., Zhao, H., Bonilla, E. V., Haffari,
G., and Phung, D. (2023). Feature-based learning for
diverse and privacy-preserving counterfactual expla-
nations. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 2211––2222. ACM.
Wachter, S., Mittelstadt, B., and Russell, C. (2017). Coun-
terfactual explanations without opening the black box:
Automated decisions and the gdpr. Harvard Journal
of Law & Technology, 31:841.
Multi-Granular Evaluation of Diverse Counterfactual Explanations
197