
Table 6: Results between MemSeg and DDPM when all the anomalous samples are available.
N
aug
AP ↑ Precision ↑ Recall ↑ N
aug
AP ↑ Precision ↑ Recall ↑
MemSeg 80 .744 (.007) .851 (.055) .691 (.058) DDPM 80 .758 (.007) .808 (.056) .768 (.043)
MemSeg 100 .774 (.016) .814 (.038) .752 (.028) DDPM 100 .763 (.008) .829 (.059) .725 (.034)
MemSeg 120 .734 (.032) .772 (.107) .707 (.031) DDPM 120 .772 (.034) .858 (.084) .725 (.061)
Average .751 (.018) .812 (.067) .717 (.039) Average .764 (.016) .832 (.066) .739 (.046)
der weak supervision of .782. These results encour-
age further study on additional datasets and exploring
how textual prompts interact with DDPM, especially
when defects are very few and not limited to cracks
and scratches.
ACKNOWLEDGEMENTS
This study was carried out within the PNRR research
activities of the consortium iNEST (Interconnected
North-Est Innovation Ecosystem) funded by the Eu-
ropean Union Next-GenerationEU (Piano Nazionale
di Ripresa e Resilienza (PNRR) – Missione 4 Com-
ponente 2, Investimento 1.5 – D.D. 1058 23/06/2022,
ECS 00000043). This manuscript reflects only the
Authors’ views and opinions, neither the European
Union nor the European Commission can be consid-
ered responsible for them.
REFERENCES
Bo
ˇ
zi
ˇ
c, J., Tabernik, D., and Sko
ˇ
caj, D. (2021). Mixed su-
pervision for surface-defect detection: From weakly
to fully supervised learning. Computers in Industry,
129:103459.
Capogrosso, L., Mascolini, A., Girella, F., Skenderi, G.,
Gaiardelli, S., Dall’Ora, N., Ponzio, F., Fraccaroli,
E., Di Cataldo, S., Vinco, S., et al. (2023). Neuro-
symbolic empowered denoising diffusion probabilis-
tic models for real-time anomaly detection in industry
4.0: Wild-and-crazy-idea paper. In 2023 Forum on
Specification & Design Languages (FDL), pages 1–4.
IEEE.
Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L.
(2022). 8-bit optimizers via block-wise quantization.
ICLR.
Dhariwal, P. and Nichol, A. (2021). Diffusion models beat
gans on image synthesis. Advances in Neural Infor-
mation Processing Systems, 34:8780–8794.
Hanzaei, S. H., Afshar, A., and Barazandeh, F. (2017).
Automatic detection and classification of the ceramic
tiles’ surface defects. Pattern recognition, 66:174–
189.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR, pages
770–778.
Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in neural information
processing systems, 33:6840–6851.
Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. (2021). Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10684–10695.
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and
Aberman, K. (2023). Dreambooth: Fine tuning text-
to-image diffusion models for subject-driven genera-
tion. In CVPR, pages 22500–22510.
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. (2015). Deep unsupervised learning us-
ing nonequilibrium thermodynamics. In ICML, pages
2256–2265. PMLR.
Tsang, C. S., Ngan, H. Y., and Pang, G. K. (2016). Fabric
inspection based on the elo rating method. Pattern
Recognition, 51:378–394.
Wang, T., Chen, Y., Qiao, M., and Snoussi, H. (2018). A fast
and robust convolutional neural network-based defect
detection model in product quality control. The In-
ternational Journal of Advanced Manufacturing Tech-
nology, 94:3465–3471.
Yang, M., Wu, P., and Feng, H. (2023). Memseg: A semi-
supervised method for image surface defect detection
using differences and commonalities. Engineering
Applications of Artificial Intelligence, 119:105835.
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2021). Draem-
a discriminatively trained reconstruction embedding
for surface anomaly detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 8330–8339.
Zhang, H., Wang, Z., Wu, Z., and Jiang, Y.-G. (2023a). Dif-
fusionad: Denoising diffusion for anomaly detection.
arXiv preprint arXiv:2303.08730.
Zhang, H., Wu, Z., Wang, Z., Chen, Z., and Jiang, Y.-G.
(2023b). Prototypical residual networks for anomaly
detection and localization. In CVPR.
Zhang, J., Su, H., Zou, W., Gong, X., Zhang, Z., and Shen,
F. (2021). Cadn: a weakly supervised learning-based
category-aware object detection network for surface
defect detection. Pattern Recognition, 109:107571.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
416