
image classification with ensembles of support vector
machines on the d-wave quantum annealer. In IGARSS
2020-2020 IEEE International Geoscience and Re-
mote Sensing Symposium, pages 1973–1976. IEEE.
Chiteri, M. (2018). Cash-flow and residual value analysis
for construction equipment. Master’s thesis, Univer-
sity of Alberta.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20:273–297.
Das, A. and Chakrabarti, B. K. (2005). Quantum anneal-
ing and related optimization methods, volume 679.
Springer Science & Business Media.
Géron, A. (2022). Hands-on machine learning with Scikit-
Learn, Keras, and TensorFlow. " O’Reilly Media".
Grossi, M., Ibrahim, N., Radescu, V., Loredo, R., Voigt, K.,
von Altrock, C., and Rudnik, A. (2022). Mixed quan-
tum–classical method for fraud detection with quan-
tum feature selection. IEEE Transactions on Quantum
Engineering, 3:1–12.
Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). Quan-
tum algorithm for linear systems of equations. Physi-
cal review letters, 103(15):150502.
Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H.,
and Oliver, W. D. (2020). Perspectives of quantum
annealing: Methods and implementations. Reports on
Progress in Physics, 83(5):054401.
Havlí
ˇ
cek, V., Córcoles, A. D., Temme, K., Harrow, A. W.,
Kandala, A., Chow, J. M., and Gambetta, J. M. (2019).
Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209–212.
Huang et al., H.-Y. (2021). Power of data in quantum ma-
chine learning. Nature Communications, 12(1):2631.
IBM (2018). An open high-performance simulator for
quantum circuits. IBM Research Editorial Staff.
IBM-Qiskit (2023). Qiskit github page. https://github.com/
Qiskit.
Jerbi, S., Fiderer, L. J., Nautrup, H. P., Kübler, J. M.,
Briegel, H. J., and Dunjko, V. (2023). Quantum ma-
chine learning beyond kernel methods. Nature Com-
munications, 14(1).
Kadowaki, T. and Nishimori, H. (1998). Quantum anneal-
ing in the transverse ising model. Physical Review E,
58(5):5355.
Liu, Y., Arunachalam, S., and Temme, K. (2021). A rig-
orous and robust quantum speed-up in supervised ma-
chine learning. Nature Physics, 17(9):1013–1017.
Lucko, G., Vorster, M. C., and Anderson-Cook, C. M.
(2007). Unknown element of owning costs - impact
of residual value. JCEMD4, 133(1).
Miloševi
´
c, I., Kova
ˇ
cevi
´
c, M., and Petronijevi
´
c, P. (2021).
Estimating residual value of heavy construction equip-
ment using ensemble learning. JCEMD4, 147(7).
Newman, D. A. (2014). Missing data: Five practical guide-
lines. Organizational Research Methods, 17(4).
Ng, A. et al. (2011). Sparse autoencoder. CS294A Lecture
notes, 72(2011):1–19.
Peters et al., E. (2021). Machine learning of high dimen-
sional data on a noisy quantum processor. npj Quan-
tum Information, 7(1):161.
Schölkopf, B., Smola, A. J., Bach, F., et al. (2002). Learn-
ing with kernels: support vector machines, regular-
ization, optimization, and beyond. MIT press.
Schuld, M., Fingerhuth, M., and Petruccione, F. (2017).
Implementing a distance-based classifier with a
quantum interference circuit. Europhysics Letters,
119(6):60002.
Schuld, M., Sweke, R., and Meyer, J. J. (2021). Effect of
data encoding on the expressive power of variational
quantum-machine-learning models. Physical Review
A, 103(3):032430.
Shehadeh, A., Alshboul, O., Al Mamlook, R. E., and Hame-
dat, O. (2021). Machine learning models for predict-
ing the residual value of heavy construction equip-
ment: An evaluation of modified decision tree, light-
gbm, and xgboost regression. Automation in Con-
struction, 129:103827.
Shor, P. W. (1999). Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332.
Steinwart, I. and Christmann, A. (2008). Support vector
machines. Springer Science & Business Media.
Stühler., H., Zöller., M., Klau., D., Beiderwellen-
Bedrikow., A., and Tutschku., C. (2023). Benchmark-
ing automated machine learning methods for price
forecasting applications. In Proceedings of the 12th
International Conference on Data Science, Technol-
ogy and Applications - DATA, pages 30–39. INSTICC,
SciTePress.
Thanasilp, S., Wang, S., Cerezo, M., and Holmes, Z.
(2022). Exponential concentration and untrainabil-
ity in quantum kernel methods. arXiv preprint
arXiv:2208.11060.
Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent
advances in autoencoder-based representation learn-
ing. arXiv preprint arXiv:1812.05069.
Vapnik, V. N. (1999). An overview of statistical learn-
ing theory. IEEE transactions on neural networks,
10(5):988–999.
Willsch, D., Willsch, M., De Raedt, H., and Michielsen,
K. (2020). Support vector machines on the d-wave
quantum annealer. Computer physics communica-
tions, 248:107006.
Wood, C. J. (2019). Introducing qiskit aer: A high per-
formance simulator framework for quantum circuits.
Medium.
Wo´zniak, K. A., Belis, V., Puljak, E., Barkoutsos, P., Disser-
tori, G., Grossi, M., Pierini, M., Reiter, F., Tavernelli,
I., and Vallecorsa, S. (2023). Quantum anomaly de-
tection in the latent space of proton collision events at
the lhc. arXiv preprint arXiv:2301.10780.
Zöller, M.-A., Nguyen, T.-D., and Huber, M. F. (2021).
Incremental search space construction for machine
learning pipeline synthesis. In Advances in Intelligent
Data Analysis XIX.
Zong, Y. (2017). Maintenance cost and residual value pre-
diction of heavy construction equipment. Master’s
thesis, University of Alberta.
Zoph, B. and Le, Q. V. (2016). Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
384