REFERENCES
Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz,
J. L. (2012). Human activity recognition on smart-
phones using a multiclass hardware-friendly support
vector machine. In Proc. Intl. Workshop on ambient
assisted living, pages 216–223. Springer.
Aum
¨
uller, M. and Ceccarello, M. (2019). The Role of Lo-
cal Intrinsic Dimensionality in Benchmarking Nearest
Neighbor Search. arXiv:1907.07387 [cs].
Bac, J., Mirkes, E. M., Gorban, A. N., Tyukin, I., and
Zinovyev, A. (2021). Scikit-Dimension: A Python
Package for Intrinsic Dimension Estimation. Entropy,
23(10):1368.
Bahadur, N. and Paffenroth, R. (2019). Dimension Esti-
mation Using Autoencoders. arXiv:1909.10702 [cs,
stat].
Bennett, R. (1969). The intrinsic dimensionality of signal
collections. IEEE Trans. Inform. Theory, 15(5):517–
525.
Breiman, L. (2001). Random Forests. Mach. Learn., 45(1):5–
32.
Camastra, F. (2003). Data dimensionality estimation meth-
ods: a survey. Pattern Recognit., 36(12):2945–2954.
Campadelli, P., Casiraghi, E., Ceruti, C., and Rozza, A.
(2015). Intrinsic dimension estimation: Relevant tech-
niques and a benchmark framework. Math. Probl. Eng.,
2015:1–21.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Mach. Learn., 20(3):273–297.
Cox, D. R. (1958). Two further applications of a model for
binary regression. Biometrika, 45(3/4):562–565.
dos Santos Amorim, E. P., Brazil, E. V., Daniels, J., Joia,
P., Nonato, L. G., and Sousa, M. C. (2012). iLAMP:
Exploring high-dimensional spacing through backward
multidimensional projection. In Proc. IEEE VAST,
pages 53–62.
El Moudden, I., El Bernoussi, S., and Benyacoub, B. (2016).
Modeling human activity recognition by dimensional-
ity reduction approach. In Proc. IBIMA, pages 1800–
1805.
Engel, D., H
¨
uttenberger, L., and Hamann, B. (2012). A
survey of dimension reduction methods for high-
dimensional data analysis and visualization. In Proc.
IRTG workshop, volume 27, pages 135–149. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.
Espadoto, M., Appleby, G., Suh, A., Cashman, D., Li,
M., Scheidegger, C. E., Anderson, E. W., Chang, R.,
and Telea, A. C. (2021a). UnProjection: Leverag-
ing Inverse-Projections for Visual Analytics of High-
Dimensional Data. IEEE TVCG, pages 1–1.
Espadoto, M., Hirata, N., and Telea, A. (2021b). Self-
supervised Dimensionality Reduction with Neural Net-
works and Pseudo-labeling. In Proc. IVAPP, pages
27–37. SciTePress.
Espadoto, M., Martins, R., Kerren, A., Hirata, N., and Telea,
A. (2019a). Toward a quantitative survey of dimension
reduction techniques. IEEE TVCG, 27(3):2153–2173.
Espadoto, M., Rodrigues, F. C. M., Hirata, N. S. T., and
Hirata Jr, R. (2019b). Deep Learning Inverse Multidi-
mensional Projections. In Proc. EuroVA, page 5.
Espadoto, M., Rodrigues, F. C. M., and Telea, A. (2019c).
Visual analytics of multidimensional projections for
constructing classifier decision boundary maps. In
Proc. IVAPP. SCITEPRESS.
Facco, E., d’Errico, M., Rodriguez, A., and Laio, A. (2017).
Estimating the intrinsic dimension of datasets by a min-
imal neighborhood information. Sci Rep, 7(1):12140.
Fan, M., Gu, N., Qiao, H., and Zhang, B. (2010). Intrinsic
dimension estimation of data by principal component
analysis. arXiv:1002.2050 [cs].
Fisher, R. A. (1988). Iris Plants Database. UCI Machine
Learning Repository.
Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507.
Huang, X., Wu, L., and Ye, Y. (2019). A review on dimen-
sionality reduction techniques. Int. J. Pattern Recognit.
Artif. Intell., 33(10):1950017.
Joia, P., Coimbra, D., Cuminato, J. A., Paulovich, F. V., and
Nonato, L. G. (2011). Local affine multidimensional
projection. IEEE TVCG, 17(12):2563–2571.
Jolliffe, I. T. (2002). Principal component analysis for spe-
cial types of data. Springer.
LeCun, Y., Cortes, C., and Burges, C.
(2010). MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist.
McInnes, L., Healy, J., and Melville, J. (2018). UMAP:
Uniform Manifold Approximation and Projection for
Dimension Reduction. arXiv:1802.03426 [cs, stat].
Munzner, T. (2014). Visualization analysis and design. CRC
press.
Nonato, L. and Aupetit, M. (2018). Multidimensional pro-
jection for visual analytics: Linking techniques with
distortions, tasks, and layout enrichment. IEEE TVCG,
25:2650–2673.
Oliveira, A. A. A. M., Espadoto, M., Hirata, R., and Telea,
A. C. (2023). Stability Analysis of Supervised Decision
Boundary Maps. SN COMPUT. SCI., 4(3):226.
Oliveira, A. A. A. M., Espadoto, M., Hirata Jr, R., and
Telea, A. C. (2022). SDBM: Supervised Decision
Boundary Maps for Machine Learning Classifiers. In
Proc. IVAPP, pages 77–87.
Paulsen, W. (2023). A Peano-based space-filling surface of
fractal dimension three. Chaos, Solitons & Fractals,
168.
Peano, G. (1890). Sur une courbe, qui remplit toute une aire
plane. Mathematische Annalen, 36(1):157–160.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., and Dubourg, V. (2011). Scikit-learn:
Machine learning in Python. J. Mach. Learn. Res.,
12:2825–2830.
Rodrigues, F. C. M., Espadoto, M., Hirata, R., and Telea,
A. C. (2019). Constructing and Visualizing High-
Quality Classifier Decision Boundary Maps. Infor-
mation, 10(9):280.
Fundamental Limitations of Inverse Projections and Decision Maps
581