Organization (NEDO). We thank all these
organizations for the financial and technical support
provided. Synecoculture™ is a trademark of Sony
Group Corporation.
REFERENCES
Bendiabdallah, M, H., and Settouti, N. (2021). A
comparison of UNet backbone architectures for the
automatic white blood cells segmentation. WAS
Science Nature (WASSN) ISSN: 2766-7715, 4(1).
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous
separable convolution for semantic image
segmentation. Proceedings of the European conference
on computer vision (ECCV):801-818.
Conway, G. R., and Barbie, E. B. (1988). After the green
revolution: sustainable and equitable agricultural
development. Futures, 20(6):651-670.
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W.,
Emmerson, M., Morales, M. B., Ceryngier, P., Liira, J.,
Tscharntke, Teja., Winqvist, Camilla., Eggers, S.,
Bommarco, R., Pärt, T., Bretagnolle, V., Plantegenest,
M., Clement, L., Dennis, C., Palmer, C., Oñate, J.,
Guerrero, I., and Inchausti, Pablo. (2010). Persistent
negative effects of pesticides on biodiversity and
biological control potential on European farmland.
Basic and Applied Ecology, 11(2):97-105.
Ide H., Aotake S., Ogata H., Ohtani T., Takanishi A.,
Funabashi M. (2022). A method for detecting dominant
plants in fields from RGB images using Deep Learning.
The Institute of Image Electronics Engineers of Japan:
186-192 (in Japanese).
Kolhar, S., and Jagtap, J. (2023). Phenomics for Komatsuna
plant growth tracking using deep learning approach.
Expert Systems with Applications, 215, 119368.
Li, G., Cui, J., Han, W., Zhang, H., Huang, S., Chen, H.,
and Ao, J. (2022). Crop type mapping using Time series
Sentinel-2 imagery and UNet in early growth periods in
the Hetao irrigation district in China. Computers and
Electronics in Agriculture, 203, 107478.
Mortensen, A. K., Dyrmann, M., Karstoft, H., Jørgensen,
R. N., and Gislum, R. (2016). Semantic segmentation
of mixed crops using deep convolutional neural
network. CIGR-AgEng conference:26-29.
Nasiri, A., Omid, M., Taheri-Garavand, A., and Jafari, A.
(2022). Deep learning-based precision agriculture
through weed recognition in sugar beet fields.
Sustainable Computing. Informatics and Systems, 35,
100759.
Norris, K. (2008). Agriculture and biodiversity
conservation: opportunity knocks. Conservation letters,
1(1):2-11.
Picon, A., San-Emeterio, M. G., Bereciartua-Perez, A.,
Klukas, C., Eggers, T., and Navarra-Mestre, R. (2022).
Deep learning-based segmentation of multiple species
of weeds and corn crop using synthetic and real image
datasets. Computers and Electronics in Agriculture,
194, 106719.
Raja, R., Nguyen, T. T., Slaughter, D. C., and Fennimore,
S. A. (2020). Real-time robotic weed knife control
system for tomato and lettuce based on geometric
appearance of plant labels. Biosystems Engineering,
194:152-164.
Saikawa, T., Cap, Q. H., Kagiwada, S., Uga, H., and
Iyatomi, H. (2019, December). Aop: An anti-overfitting
pretreatment for practical image-based plant diagnosis.
2019 IEEE International Conference on Big Data (Big
Data):5177-5182.
Savci, S. (2012). Investigation of effect of chemical
fertilizers on environment. Apcbee Procedia, 1:287-
292.
Sharifzadeh, S., Tata, J., Sharifzadeh, H., and Tan, B.
(2020). Farm area segmentation in satellite images
using DeeplabV3+ neural networks. Data Management
Technologies and Applications. 8th International
Conference, DATA 2019, Prague, Czech Republic,
July 26–28, 2019, Revised Selected Papers 8:115-135.
Tanaka T., Masaya K., Terae K., Mizukami H., Murakami
M., Yoshida S., Aotake S., Funabashi M., Otani T., and
Takanishi A. (2022). Development of the Agricultural
Robot in SynecocultureTM Environment (1st Report,
Development of Moving Mechanism on the Farm and
Realization of Weeding and Harvesting), Journal of the
Robotics Society of Japan, 40(9):845-848 (in
Japanese).
Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R.,
Connell, D., Chu, C., and Phung, D. T. (2021).
Agriculture development, pesticide application and its
impact on the environment. International journal of
environmental research and public health, 18(3), 1112.
Wang, C., Du, P., Wu, H., Li, J., Zhao, C., and Zhu, H.
(2021). A cucumber leaf disease severity classification
method based on the fusion of DeeplabV3+ and UNet.
Computers and Electronics in Agriculture, 189,
106373.
Yu, H., Che, M., Yu, H., and Zhang, J. (2022).
Development of Weed Detection Method in Soybean
Fields Utilizing Improved DeeplabV3+ Platform.
Agronomy, 12(11), 2889.
Zou, K., Chen, X., Wang, Y., Zhang, C., and Zhang, F.
(2021). A modified UNet with a specific data
argumentation method for semantic segmentation of
weed images in the field. Computers and Electronics in
Agriculture, 187, 106242.