There are, however, some triangle configurations
that are not suitable for the proposed algorithm. In the
future, we plan to investigate the particular properties
that cause the drop of compression performance of
our algorithm in these cases, and the possible strate-
gies to mitigate this performance loss.
ACKNOWLEDGEMENTS
This work was supported by the project 20-02154S
of the Czech Science Foundation. Filip H
´
acha was
partially supported by the University specific research
project SGS-2022-015, New Methods for Medical,
Spatial and Communication Data.
REFERENCES
Ahn, J.-H., Kim, C.-S., and Ho, Y.-S. (2006). Predictive
compression of geometry, color and normal data of 3-
d mesh models. IEEE Transactions on Circuits and
Systems for Video Technology, 16(2):291–299.
Alexa, M. and Kyprianidis, J. E. (2015). Error diffusion on
meshes. Computers & Graphics, 46:336–344. Shape
Modeling International 2014.
Alliez, P. and Desbrun, M. (2001). Valence-Driven Connec-
tivity Encoding for 3D Meshes. Computer Graphics
Forum.
Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro:
Measuring error on simplified surfaces. Computer
Graphics Forum, 17:167 – 174.
Cohen-Or, D., Cohen, R., and Irony, R. (2002). Multi-way
geometry encoding. Tech. Rep., Tel Aviv University.
Courbet, C. and Hudelot, C. (2011). Taylor prediction for
mesh geometry compression. Computer Graphics Fo-
rum, 30(1):139–151.
Feng, X., Wan, W., Xu, R. Y. D., Chen, H., Li, P., and
S
´
anchez, J. A. (2018). A perceptual quality metric for
3d triangle meshes based on spatial pooling. Frontiers
of Computer Science, 12(4):798–812.
Galligan, F., Hemmer, M., Stava, O., Zhang, F., and Brettle,
J. (2018). Google/draco: a library for compressing
and decompressing 3d geometric meshes and point
clouds.
Gumhold, S. and Amjoun, R. (2003). Higher order pre-
diction for geometry compression. In Proceedings
of Shape Modeling International 2003, SMI ’03,
page 59, USA. IEEE Computer Society.
Karni, Z. and Gotsman, C. (2000). Spectral compression
of mesh geometry. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’00, page 279–286,
USA. ACM Press/Addison-Wesley Publishing Co.
K
¨
alberer, F., Polthier, K., Reitebuch, U., and Wardetzky, M.
(2005). Freelence - coding with free valences. Com-
puter Graphics Forum, 24(3):469–478.
Lavou
´
e, G. (2011). A multiscale metric for 3d mesh vi-
sual quality assessment. Computer Graphics Forum,
30(5):1427–1437.
Lee, H., Alliez, P., and Desbrun, M. (2002). Angle-
analyzer: A triangle-quad mesh codec. Computer
Graphics Forum, 21(3):383–392.
Lobaz, P. and V
´
a
ˇ
sa, L. (2014). Hierarchical laplacian-based
compression of triangle meshes. Graphical Models,
76(6):682–690.
Mamou, K., Zaharia, T., and Pr
ˆ
eteux, F. (2009). Tfan:
A low complexity 3d mesh compression algorithm.
Comput. Animat. Virtual Worlds, 20(2-3):343–354.
Marras, S., V
´
a
ˇ
sa, L., Brunnett, G., and Hormann, K. (2015).
Perception-driven adaptive compression of static tri-
angle meshes. Computer-Aided Design, 58:24–33.
Solid and Physical Modeling 2014.
Rossignac, J. (1999). Edgebreaker: Connectivity compres-
sion for triangle meshes. IEEE Transactions on Visu-
alization and Computer Graphics, 5(1):47–61.
Sim, J.-Y., Kim, C.-S., and Lee, S.-U. (2003). An efficient
3d mesh compression technique based on triangle fan
structure. Signal Processing: Image Communication,
18(1):17–32.
Sorkine, O., Cohen-Or, D., and Toledo, S. (2003). High-
pass quantization for mesh encoding. In Proceedings
of the 2003 Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing, SGP ’03, page 42–51,
Goslar, DEU. Eurographics Association.
Torkhani, F., Wang, K., and Chassery, J.-M. (2014). A
curvature-tensor-based perceptual quality metric for
3d triangular meshes. Machine GRAPHICS & VI-
SION, 23(1/2):59–82.
Touma, C. and Gotsman, C. (1998). Triangle mesh com-
pression. In Proceedings of the Graphics Interface
1998 Conference, June 18-20, 1998, Vancouver, BC,
Canada, pages 26–34.
V
´
a
ˇ
sa, L. and Rus, J. (2012). Dihedral angle mesh error: a
fast perception correlated distortion measure for fixed
connectivity triangle meshes. Computer Graphics Fo-
rum, 31(5):1715–1724.
V
´
a
ˇ
sa, L. and Brunnett, G. (2013). Exploiting connectiv-
ity to improve the tangential part of geometry predic-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 19(9):1467–1475.
V
´
a
ˇ
sa, L. and Dvo
ˇ
r
´
ak, J. (2018). Error propagation control
in laplacian mesh compression. Computer Graphics
Forum, 37(5):61–70.
Wang, K., Torkhani, F., and Montanvert, A. (2012). A
fast roughness-based approach to the assessment of
3d mesh visual quality. Computers & Graphics,
36(7):808–818. Augmented Reality Computer Graph-
ics in China.
Zhou, Q. and Jacobson, A. (2016). Thingi10k: A
dataset of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797.
A Predictor for Triangle Mesh Compression Working in Tangent Space
243