
Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S.,
Siegwart, R., Fua, P., Salzmann, M., and Rottmann,
M. (2021a). Segmentmeifyoucan: A benchmark for
anomaly segmentation. In Conference on Neural In-
formation Processing Systems Datasets and Bench-
marks Track.
Chan, R., Rottmann, M., and Gottschalk, H. (2021b). En-
tropy maximization and meta classification for out-of-
distribution detection in semantic segmentation. In
IEEE/CVF International Conference on Computer Vi-
sion (ICCV).
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sep-
arable convolution for semantic image segmentation.
In European Conference on Computer Vision (ECCV).
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).
DeVries, T. and Taylor, G. W. (2018). Leveraging uncer-
tainty estimates for predicting segmentation quality.
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In Proceedings of the 33rd Inter-
national Conference on International Conference on
Machine Learning, volume 48, pages 1050–1059.
Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud,
D., Norouzi, M., and Swersky, K. (2020). Your classi-
fier is secretly an energy based model and you should
treat it like one. International Conference on Learning
(ICLR).
Grcic, M., Bevandi
´
c, P., and Segvic, S. (2021). Dense
anomaly detection by robust learning on synthetic
negative data.
Grcic, M., Bevandi
´
c, P., and Segvic, S. (2022). Densehy-
brid: Hybrid anomaly detection for dense open-set
recognition. In European Conference on Computer
Vision (ECCV), pages 500–517.
Grcic, M.,
ˇ
Sari
´
c, J., and
ˇ
Segvi
´
c, S. (2023). On advantages
of mask-level recognition for outlier-aware segmen-
tation. IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages
2937–2947.
Gudovskiy, D., Okuno, T., and Nakata, Y. (2023). Concur-
rent misclassification and out-of-distribution detection
for semantic segmentation via energy-based normaliz-
ing flow.
Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017).
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–
1330. PMLR.
Hendrycks, D. and Gimpel, K. (2016). A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks.
Hoebel, K., Andrearczyk, V., Beers, A., Patel, J., Chang,
K., et al. (2020). An exploration of uncertainty infor-
mation for segmentation quality assessment.
Hornauer, J. and Belagiannis, V. (2022). Gradient-based
uncertainty for monocular depth estimation. In Com-
puter Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part XX, pages 613–630. Springer.
Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-
excitation networks.
Huang, C., Wu, Q., and Meng, F. (2016). Qualitynet: Seg-
mentation quality evaluation with deep convolutional
networks. In 2016 Visual Communications and Image
Processing (VCIP), pages 1–4.
Huang, R., Geng, A., and Li, Y. (2021). On the impor-
tance of gradients for detecting distributional shifts in
the wild. In Neural Information Processing Systems
(NeurIPS).
Ilg, E., Cicek, O., Galesso, S., Klein, A., Makansi, O., Hut-
ter, F., and Brox, T. (2018). Uncertainty estimates and
multi-hypotheses networks for optical flow. In Pro-
ceedings of the European Conference on Computer
Vision (ECCV), pages 652–667.
Jaccard, P. (1912). The distribution of the flora in the alpine
zone. New Phytologist.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles. In Neural Information Process-
ing Systems (NeurIPS), page 6405–6416.
Lee, H., Kim, S. T., Navab, N., and Ro, Y. (2020). Efficient
ensemble model generation for uncertainty estimation
with bayesian approximation in segmentation.
Lee, J., Prabhushankar, M., and Alregib, G. (2022).
Gradient-based adversarial and out-of-distribution de-
tection. In International Conference on Machine
Learning.
Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple uni-
fied framework for detecting out-of-distribution sam-
ples and adversarial attacks. Neural Information Pro-
cessing Systems (NeurIPS).
Liang, S., Li, Y., and Srikant, R. (2018). Enhancing the re-
liability of out-of-distribution image detection in neu-
ral networks. International Conference on Learning
(ICLR).
Lis, K., Honari, S., Fua, P., and Salzmann, M. (2020). De-
tecting road obstacles by erasing them.
Lis, K., Nakka, K., Fua, P., and Salzmann, M. (2019).
Detecting the unexpected via image resynthesis. In
IEEE/CVF International Conference on Computer Vi-
sion (ICCV).
Liu, Y., Ding, C., Tian, Y., Pang, G., Belagiannis, V., Reid,
I., and Carneiro, G. (2023). Residual pattern learning
for pixel-wise out-of-distribution detection in seman-
tic segmentation.
Maag, K. (2021). False negative reduction in video instance
segmentation using uncertainty estimates. In IEEE In-
ternational Conference on Tools with Artificial Intel-
ligence (ICTAI).
Maag, K., Chan, R., Uhlemeyer, S., Kowol, K., and
Gottschalk, H. (2022). Two video data sets for track-
ing and retrieval of out of distribution objects. In Asian
Conference on Computer Vision (ACCV), pages 3776–
3794.
Maag, K., Rottmann, M., and Gottschalk, H. (2020). Time-
dynamic estimates of the reliability of deep semantic
Pixel-Wise Gradient Uncertainty for Convolutional Neural Networks Applied to Out-of-Distribution Segmentation
121