6 CONCLUDING REMARKS
This paper presented a graphical tool for data prove-
nance modeling based on the W3C PROV standard.
The development involved three key stages: con-
verting the PROV data model (PROV-DM) into an
Ecore metamodel, constructing the graphical tool
with Eclipse Sirius, and utilizing Eclipse Acceleo for
model-to-text transformations to generate PROV-N
code. The Ecore4PROV-DM metamodel underwent
evaluation by fifteen metamodeling experts, resulting
in consensus on its alignment with PROV-DM.
The graphical tool addresses a significant gap
by providing a user-friendly interface for creating
expressive data provenance models, enhancing vi-
sualization, and comprehension of provenance rela-
tionships. It allows exporting PROV-N code from
the graphical model, ensuring interoperability and
compatibility with existing provenance representa-
tions. The tool facilitates seamless integration of data
provenance into systems, fostering the adoption of
provenance-aware applications and extending its util-
ity to diverse applications, including provenance in-
formation extraction from databases using the PROV-
Template approach.
While demonstrating the tool’s use in certain sce-
narios, further evaluation is crucial for future re-
search. Usability studies and expert feedback would
enhance functionality, user experience, and effective-
ness. Investigating the tool’s integration with other
provenance management systems and assessing per-
formance in real-world scenarios will contribute to its
practical applicability.
ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support pro-
vided by the Instituto Federal Goiano in facilitating
and funding this research.
REFERENCES
Bruel, J.-M., Combemale, B., Guerra, E., J
´
ez
´
equel, J.-
M., Kienzle, J., de Lara, J., Mussbacher, G., Syri-
ani, E., and Vangheluwe, H. (2018). Model trans-
formation reuse across metamodels. In Rensink, A.
and S
´
anchez Cuadrado, J., editors, Theory and Prac-
tice of Model Transformation, pages 92–109, Cham.
Springer International Publishing.
Bucchiarone, A., Cabot, J., Paige, R. F., and Pierantonio, A.
(2020). Grand challenges in model-driven engineer-
ing: an analysis of the state of the research. Software
and Systems Modeling, 19(1):5–13.
Glavic, B. (2021). Data provenance. Foundations and
Trends
R
in Databases, 9(3-4):209–441.
Herschel, M., Diestelk
¨
amper, R., and Ben Lahmar, H.
(2017). A survey on provenance: What for? What
form? What from? The VLDB Journal, 26(6):881–
906.
Hu, R., Yan, Z., Ding, W., and Yang, L. T. (2020). A
survey on data provenance in IoT. World Wide Web,
23(2):1441–1463.
Huynh, T. D. (2020). PROV Python - A library for
W3C Provenance Data Model supporting PROV-
JSON, PROV-XML and PROV-O (RDF). Available
online: https://pypi.org/project/prov/.
Huynh, T. D. and Moreau, L. (2015). ProvStore: A Public
Provenance Repository. In Lud
¨
ascher, B. and Plale,
B., editors, Provenance and Annotation of Data and
Processes, pages 275–277, Cham. Springer Interna-
tional Publishing.
Kudo, T. N., Bulc
˜
ao-Neto, R. F., and Vincenzi, A. M. R.
(2020). Metamodel Quality Requirements and Evalu-
ation (MQuaRE). Technical report, Departamento de
Computac¸
˜
ao, UFScar, S
˜
ao Carlos-SP, Brazil. v 2.0.
L
´
opez-Fern
´
andez, J. J., Cuadrado, J. S., Guerra, E., and
de Lara, J. (2015). Example-driven meta-model devel-
opment. Software & Systems Modeling, 14(4):1323–
1347.
Madiot, F. and Paganelli, M. (2015). Eclipse sirius demon-
stration. P&D@ MoDELS, 1554:9–11.
Moreau, L. (2016). ProvToolbox - Java library to cre-
ate and convert W3C PROV data model representa-
tions. Available online: https://lucmoreau.github.io/
ProvToolbox/.
Moreau, L. (2017). PROV-Template: A Quick Start. Avail-
able online: https://lucmoreau.wordpress.com/2017/
03/30/prov-template-a-quick-start.
Moreau, L., Batlajery, B. V., Huynh, T. D., Michaelides,
D., and Packer, H. (2018). A templating system to
generate provenance. IEEE Transactions on Software
Engineering, 44(2):103–121.
Moreau, L. and Groth, P. (2013). Provenance: An Introduc-
tion to PROV. Springer International Publishing.
Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney,
J., Coppens, S., Cresswell, S., Gil, Y., Groth, P., Lebo,
G. K. T., McCusker, J., Miles, S., Myers, J., and Sa-
hoo, S. (2013a). PROV-DM: The PROV Data Model.
Available online: https://www.w3.org/TR/prov-dm/.
Moreau, L., Missier, P., Cheney, J., and Soiland-Reyes, S.
(2013b). PROV-N: The Provenance Notation. Avail-
able online: https://www.w3.org/TR/prov-n/.
P
´
erez, B., Rubio, J., and S
´
aenz-Ad
´
an, C. (2018). A system-
atic review of provenance systems. Knowledge and
Information Systems, 57(3):495–543.
Rodrigues da Silva, A. (2015). Model-driven engineering:
A survey supported by the unified conceptual model.
Computer Languages, Systems & Structures, 43:139–
155.
Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: Eclipse Modeling Framework. Pearson
Education.
MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering
148