
Table 5: Comparison with results achieved by other studies.
Approach
Total
samples
Testing
ACC
Training time
(sec)
Learning speed
(samples/sec)
Hong08 + OS-ELM (Our proposal) 2,578,785 0.94 4,980.95 414.18
Hong08 + W-ELM2 (Zabala-Blanco et al., 2020b) 30,000 0.94 880.00 18.18
Bayesian deep CNN (Zia et al., 2019) 3,300 0.96 4,393.00 0.38
Novel CNN (Peralta et al., 2018) 40,000 0.99 960.00 10.42
CaffeNet (Peralta et al., 2018) 40,000 0.99 2,306.00 4.34
Pretrained VGG-S (Michelsanti et al., 2017) 3,300 0.96 108,000.00 0.03
logical operation and agnn classifier. Applied computing
and informatics, 14(2):166–176.
Cao, K., Pang, L., Liang, J., and Tian, J. (2013). Finger-
print classification by a hierarchical classifier. Pattern
Recognition, 46(12):3186–3197.
Cao, W., Wang, X., Ming, Z., and Gao, J. (2018). A review
on neural networks with random weights. Neurocomput-
ing, 275:278–287.
Courrieu, P. (2008). Fast computation of moore-penrose
inverse matrices. arXiv preprint arXiv:0804.4809.
Deng, C., Han, Y., and Zhao, B. (2019). High-performance
visual tracking with extreme learning machine frame-
work. IEEE transactions on cybernetics, 50(6):2781–
2792.
Dorasamy, K., Webb, L., Tapamo, J., and Khanyile, N. P.
(2015). Fingerprint classification using a simplified rule-
set based on directional patterns and singularity features.
In 2015 International Conference on Biometrics (ICB),
pages 400–407. IEEE.
El Hamdi, D., Elouedi, I., Fathallah, A., Nguyen, M. K.,
and Hamouda, A. (2018). Fingerprint classification us-
ing conic radon transform and convolutional neural net-
works. In Advanced Concepts for Intelligent Vision
Systems: 19th International Conference, ACIVS 2018,
Poitiers, France, September 24–27, 2018, Proceedings
19, pages 402–413. Springer.
Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain,
D., Lopez-Molina, C., Garc
´
ıa, S., Ben
´
ıtez, J. M., Pagola,
M., Barrenechea, E., et al. (2015a). A survey of fin-
gerprint classification part i: Taxonomies on feature ex-
traction methods and learning models. Knowledge-based
systems, 81:76–97.
Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D.,
Lopez-Molina, C., Garc
´
ıa, S., Ben
´
ıtez, J. M., Pagola, M.,
Barrenechea, E., et al. (2015b). A survey of fingerprint
classification part ii: Experimental analysis and ensem-
ble proposal. Knowledge-Based Systems, 81:98–116.
Galar, M., Sanz, J., Pagola, M., Bustince, H., and Herrera,
F. (2014). A preliminary study on fingerprint classifi-
cation using fuzzy rule-based classification systems. In
2014 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), pages 554–560. IEEE.
Ge, S., Bai, C., Liu, Y., Liu, Y., and Zhao, T. (2017). Deep
and discriminative feature learning for fingerprint clas-
sification. In 2017 3rd IEEE International Conference
on Computer and Communications (ICCC), pages 1942–
1946.
Golub, G. and Kahan, W. (1965). Calculating the singular
values and pseudo-inverse of a matrix. Journal of the
Society for Industrial and Applied Mathematics, Series
B: Numerical Analysis, 2(2):205–224.
Greville, T. (1959). The pseudoinverse of a rectangular or
singular matrix and its application to the solution of sys-
tems of linear equations. SIAM review, 1(1):38–43.
Guo, J.-M., Liu, Y.-F., Chang, J.-Y., and Lee, J.-D. (2014).
Fingerprint classification based on decision tree from
singular points and orientation field. Expert Systems with
Applications, 41(2):752–764.
Gupta, P. and Gupta, P. (2015). A robust singular point
detection algorithm. Applied Soft Computing, 29:411–
423.
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme
learning machine: theory and applications. Neurocom-
puting, 70(1-3):489–501.
Huang, Q., Chang, S., Liu, C., Niu, B., Tang, M., and Zhou,
Z. (2015). An evaluation of fake fingerprint databases
utilizing svm classification. Pattern Recognition Letters,
60:1–7.
Jung, H.-W. and Lee, J.-H. (2015). Noisy and incom-
plete fingerprint classification using local ridge distribu-
tion models. Pattern recognition, 48(2):473–484.
Li, W., Chen, C., Su, H., and Du, Q. (2015). Local bi-
nary patterns and extreme learning machine for hyper-
spectral imagery classification. IEEE Transactions on
Geoscience and Remote Sensing, 53(7):3681–3693.
Liang, N.-Y., Huang, G.-B., Saratchandran, P., and Sun-
dararajan, N. (2006). A fast and accurate online sequen-
tial learning algorithm for feedforward networks. IEEE
Transactions on neural networks, 17(6):1411–1423.
Liu, M. (2010). Fingerprint classification based on adaboost
learning from singularity features. Pattern Recognition,
43(3):1062–1070.
Lu, L., Zhang, X., and Xu, X. (2019). Hypercomplex ex-
treme learning machine with its application in multispec-
tral palmprint recognition. PloS one, 14(4):e0209083.
Lu, S., Wang, X., Zhang, G., and Zhou, X. (2015). Ef-
fective algorithms of the moore-penrose inverse matrices
for extreme learning machine. Intelligent Data Analysis,
19(4):743–760.
Luo, J., Song, D., Xiu, C., Geng, S., Dong, T., et al. (2014).
Fingerprint classification combining curvelet transform
and gray-level cooccurrence matrix. Mathematical Prob-
lems in Engineering, 2014.
Fingerprint Large Classification Using Sequential Learning on Parallel Environment
229