
H
¨
ullermeier, E. and Waegeman, W. (2021). Aleatoric and
epistemic uncertainty in machine learning: an intro-
duction to concepts and methods. Machine Learning,
110(3):457–506.
Jansen, N., Pfeiffer, J., Rumpe, B., Schmalzing, D., and
Wortmann, A. (2022). The language of SysML v2
under the magnifying glass. The Journal of Object
Technology, 21(3):3:1.
Jiang, T., Gradus, J. L., and Rosellini, A. J. (2020). Su-
pervised machine learning: A brief primer. Behavior
Therapy, 51(5):675–687.
Jiao, L. and Zhao, J. (2019). A survey on the new generation
of deep learning in image processing. IEEE Access,
7:172231–172263.
Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler,
M., and V
¨
olkel, S. (2014). Design guidelines for do-
main specific languages.
Kiureghian, A. D. and Ditlevsen, O. (2009). Aleatory
or epistemic? does it matter? Structural Safety,
31(2):105–112.
Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M.,
Zhang, C., and Zou, J. (2022). Advances, challenges
and opportunities in creating data for trustworthy ai.
Nature Machine Intelligence, 4(8):669–677.
Maletic, J. I. and Marcus, A. (2005). Data cleansing. Data
mining and knowledge discovery handbook, pages 21–
36.
Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316–344.
Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., and Shaalan,
K. (2019). Speech recognition using deep neural net-
works: A systematic review. IEEE Access, 7:19143–
19165.
Obeo (2022a). Acceleo. https://www.eclipse.org/acceleo.
last checked on Oct 2, 2024.
Obeo (2022b). Eclipse sirius. https://www.eclipse.org/
sirius. last checked on Oct 2, 2024.
O’Hagan, S. and Kell, D. B. (2015). Software review: the
KNIME workflow environment and its applications in
genetic programming and machine learning. Genetic
Programming and Evolvable Machines, 16(3):387–
391.
Pak, M. and Kim, S. (2017). A review of deep learning in
image recognition. In 2017 4th International Confer-
ence on Computer Applications and Information Pro-
cessing Technology (CAIPT), pages 1–3, Kuta Bali,
Indonesia. IEEE.
Parr, T. J. and Quong, R. W. (1995). ANTLR: A predicated-
LL (k) parser generator. Software: Practice and Ex-
perience, 25(7):789–810.
Pennock, M. J. and Wade, J. P. (2015). The top 10 illusions
of systems engineering: A research agenda. Procedia
Computer Science, 44:147–154. 2015 Conference on
Systems Engineering Research.
R
¨
ath, T., Bedini, F., Sattler, K.-U., and Zimmermann, A.
(2023). Interactive performance exploration of stream
processing applications using colored petri nets. In
Proceedings of the 17th ACM International Confer-
ence on Distributed and Event-based Systems, pages
191–194.
Recalde, L., Mahulea, C., and Silva, M. (2006). Improv-
ing analysis and simulation of continuous Petri nets.
In 2006 IEEE International Conference on Automa-
tion Science and Engineering, pages 9–14, Shanghai,
China. IEEE.
Schuller, B. W. (2013). Intelligent Audio Analysis. Springer
Berlin Heidelberg, Heidelberg, Germany.
Shinde, P. P. and Shah, S. (2018). A review of ma-
chine learning and deep learning applications. In
2018 Fourth International Conference on Comput-
ing Communication Control and Automation (IC-
CUBEA), pages 1–6, Pune, India. IEEE.
Spinellis, D. (2001). Notable design patterns for domain-
specific languages. Journal of systems and software,
56(1):91–99.
Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: eclipse modeling framework. Pearson
Education, London, Great Britain.
Suthaharan, S. (2016). Supervised Learning Algorithms,
pages 183–206. Springer US, Boston, MA.
Tappler, M., Mu
ˇ
skardin, E., Aichernig, B. K., and Pill, I.
(2021). Active model learning of stochastic reactive
systems. In Software Engineering and Formal Meth-
ods, pages 481–500. Springer International Publish-
ing, Cham, Switzerland.
The Eclipse Foundation (2022a). Eclipse QVT opera-
tional. https://projects.eclipse.org/projects/modeling.
mmt.qvt-oml. last checked on Oct 2, 2024.
The Eclipse Foundation (2022b). Xtext. https://www.
eclipse.org/Xtext. last checked on Oct 2, 2024.
Tomassetti, F. and Zaytsev, V. (2020). Reflections on the
lack of adoption of domain specific languages. In
STAF Workshops, pages 85–94.
Walther, D., Schmidt, L., Schricker, K., Junger, C.,
Bergmann, J. P., Notni, G., and M
¨
ader, P. (2022). Au-
tomatic detection and prediction of discontinuities in
laser beam butt welding utilizing deep learning. Jour-
nal of Advanced Joining Processes, 6:100119.
Wile, D. (2004). Lessons learned from real DSL ex-
periments. Science of Computer Programming,
51(3):265–290.
Xu, Y. and Goodacre, R. (2018). On splitting training
and validation set: A comparative study of cross-
validation, bootstrap and systematic sampling for es-
timating the generalization performance of supervised
learning. Journal of Analysis and Testing, 2(3):249–
262.
Zhang, D. and Tsai, J. (2003). Machine learning and
software engineering. Software Quality Journal,
11(2):87–119.
Zimmermann, A. (2008). Stochastic Discrete Event Sys-
tems. Springer Berlin, Heidelberg, Heidelberg, Ger-
many.
Zimmermann, A. (2012). Modeling and evaluation of
stochastic Petri nets with TimeNET 4.1. In 6th In-
ternational ICST Conference on Performance Evalua-
tion Methodologies and Tools, pages 54–63, Cargese,
France. IEEE.
An Analysis and Simulation Framework for Systems with Classification Components
61