To further improve the user experience, imple-
menting an additional feature to listen to songs on
Spotify would be recommended. Moreover, we plan
to evaluate the created dashboard in a user study,
also with eye tracking (Duchowski, 2003; Holmqvist
et al., 2011). Finally, the dashboard should be ex-
tended in a way to make it easy to extend to other
dataset scenarios, i.e. the dashboard might be able to
detect the data types in the dataset and the data for-
mat and based on this, can start with a desired user
interface and visual components.
REFERENCES
Bach, B., Freeman, E., Abdul-Rahman, A., Turkay, C.,
Khan, S., Fan, Y., and Chen, M. (2023). Dashboard
design patterns. IEEE Transactions on Visualization
and Computer Graphics, 29(1):342–352.
Bar, M. and Neta, M. (2006). Humans prefer curved visual
objects. Psychological Science, 17(8):645–648.
Boeker, M. and Midoglu, C. (2023). Soccer athlete data
visualization and analysis with an interactive dash-
board. In Dang-Nguyen, D., Gurrin, C., Larson,
M. A., Smeaton, A. F., Rudinac, S., Dao, M., Trattner,
C., and Chen, P., editors, Proceedings of the Interna-
tional Conference on MultiMedia Modeling, MMM,
volume 13833 of Lecture Notes in Computer Science,
pages 565–576. Springer.
Burch, M. (2022). How students design visual interfaces for
information visualization tools. In Burch, M., Wall-
ner, G., and Limberger, D., editors, Proceedings of the
15th International Symposium on Visual Information
Communication and Interaction, VINCI, pages 1:1–
1:8. ACM.
Burch, M., Hlawatsch, M., and Weiskopf, D. (2017a). Vi-
sualizing a sequence of a thousand graphs (or even
more). Computer Graphics Forum, 36(3):261–271.
Burch, M., Raschke, M., Zeyfang, A., and Weiskopf, D.
(2017b). A scalable visualization for dynamic data in
software system hierarchies. In Proceedings of IEEE
Working Conference on Software Visualization, VIS-
SOFT, pages 85–93.
Burch, M. and Schmid, M. (2024). Dashboard Design.
River Publishers.
Duchowski, A. T. (2003). Eye Tracking Methodology - The-
ory and Practice. Springer.
Guelle, R. (2022). Pagespeed optimierung: Wie kann ich
meine website ladezeit verbessern? https://de.ryte.co
m/magazine/pagespeed-optimierung-wie-kann-ich
-die-ladezeit-meiner-webseite-verbessern Accessed:
December, 2022.
Heinrich, J., Seifert, R., Burch, M., and Weiskopf, D.
(2011). Bicluster viewer: A visualization tool for an-
alyzing gene expression data. In Proceedings of Ad-
vances in Visual Computing - 7th International Sym-
posium, ISVC, pages 641–652.
Holmqvist, K., Nystr
¨
om, M., Andersson, R., Dewhurst, R.,
Jarodzka, H., and van de Weijer, J. (2011). Eye Track-
ing: A Comprehensive Guide to Methods and Mea-
sures. Oxford University Press.
Keim, D. A. (2012). Solving problems with visual ana-
lytics: Challenges and applications. In Proceedings
of Machine Learning and Knowledge Discovery in
Databases - European Conference, pages 5–6.
Kopf, D. (2019). The economics of streaming is making
songs shorter. https://qz.com/1519823/is-spotify-mak
ing-songs-shorter Accessed: November, 2022.
Kurzhals, K., Burch, M., Blascheck, T., Andrienko, G., An-
drienko, N., and Weiskopf, D. (2017). A task-based
view on the visual analysis of eye tracking data. In
Burch, M., Chuang, L., Fisher, B., Schmidt, A., and
Weiskopf, D., editors, Eye Tracking and Visualization,
pages 3–22. Springer.
Lundberg, A. (2022). Die bedeutung der farben und die
kunst, farbsymbolik anzuwenden. https://99design
s.de/blog/design-tipps/bedeutung- der- farben/#red
Accessed: December, 2022.
Musicblogger (2020). Spotify music data to identify the
moods. https://www.kaggle.com/datasets/musicb
logger/spotify- music-data-to- identify-the-moods
Accessed: November, 2022.
Roberts, J. C. (2003). Guest editor’s introduction: spe-
cial issue on coordinated and multiple views in ex-
ploratory visualization. Information Visualization,
2(4):199–200.
Rosenholtz, R., Li, Y., Mansfield, J., and Jin, Z. (2005).
Feature congestion: A measure of display clutter. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 761–770. ACM.
Shan, M. (2023). Real-time monitoring of health security
attacks with r-based data visualization dashboard. In
Wang, M. D. and Yoon, B., editors, Proceedings of the
14th ACM International Conference on Bioinformat-
ics, Computational Biology, and Health Informatics,
BCB, page 89:1. ACM.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proceedings of the IEEE Symposium on Visual Lan-
guages, pages 336–343.
Tufte, E. R. (1992). The Visual Display of Quantitative In-
formation. Graphics Press.
van Wijk, J. J. (2005). The value of visualization. In Pro-
ceedings of the 16th IEEE Visualization Conference,
IEEE VIS, pages 79–86. IEEE Computer Society.
Ware, C. (2004). Information Visualization: Perception for
Design. Morgan Kaufmann.
Ware, C. (2008). Visual Thinking: for Design. Morgan
Kaufmann Series in Interactive Technologies, Paper-
back.
Yi, J. S., ah Kang, Y., Stasko, J. T., and Jacko, J. A.
(2007). Toward a deeper understanding of the role
of interaction in information visualization. IEEE
Transactions on Visualization and Computer Graph-
ics, 13(6):1224–1231.
Zacheo, G., Buzimkic, A., Roi, A. L., van Schie, A., Staudt,
Y., and Burch, M. (2023). FitYou: A personalized
dashboard for health data. In Malina, R., Zhang, K.,
Zeng, W., and Wallner, G., editors, Proceedings of the
16th International Symposium on Visual Information
Communication and Interaction, VINCI, pages 4:1–
4:5. ACM.
IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications
660