
REFERENCES
Avatefipour, O. and Malik, H. (2018). State-of-the-art sur-
vey on in-vehicle network communication (can-bus)
security and vulnerabilities.
Axelsson, S. (2000). Intrusion detection systems: A survey
and taxonomy. Technical report, Stockholm Univer-
sity.
Bozdal, M., Samie, M., Aslam, S., and Jennions, I. (2020).
Evaluation of can bus security challenges. Sensors,
20(8).
Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H., Savage, S., Koscher, K., Czeskis, A.,
Roesner, F., and Kohno, T. (2011). Comprehensive
experimental analyses of automotive attack surfaces.
In 20th USENIX Security Symposium (USENIX Secu-
rity 11), San Francisco, CA. USENIX Association.
Chiscop, I., Gazdag, A., Bosman, J., and Bicz
´
ok, G. (2021).
Detecting message modification attacks on the CAN
bus with temporal convolutional networks. In Pro-
ceedings of the 7th International Conference on Vehi-
cle Technology and Intelligent Transport Systems.
Cho, K.-T. and Shin, K. G. (2016). Fingerprinting elec-
tronic control units for vehicle intrusion detection. In
Proceedings of the 25th USENIX Security Symposium,
pages 911–927. USENIX Association.
Dani, M.-C., Jollois, F.-X., Nadif, M., and Freixo, C.
(2015). Adaptive threshold for anomaly detection us-
ing time series segmentation. In Arik, S., Huang,
T., Lai, W. K., and Liu, Q., editors, Neural Informa-
tion Processing, pages 82–89, Cham. Springer Inter-
national Publishing.
Gazdag, A., Ferenc, R., and Butty
´
an, L. (2023). Crysys
dataset of can traffic logs containing fabrication and
masquerade attacks. Scientific Data.
Gazdag, A., Lupt
´
ak, G., and Butty
´
an, L. (2021).
Correlation-based anomaly detection for the can bus.
In Euro-CYBERSEC, Nice, France.
Gazdag, A., Neubrandt, D., Butty
´
an, L., and Szalay, Z.
(2018). Detection of injection attacks in compressed
can traffic logs. In International Workshop on Cyber
Security for Intelligent Transportation Systems, Held
in Conjunction with ESORICS 2018. Springer.
Guidry, J., Sohrab, F., Gottumukkala, R., Katragadda, S.,
and Gabbouj, M. (2023). One-class classification for
intrusion detection on vehicular networks.
Hanselmann, M., Strauss, T., Dormann, K., and Ulmer, H.
(2020). Canet: An unsupervised intrusion detection
system for high dimensional can bus data. IEEE Ac-
cess, 8:58194–58205.
Kukkala, V. K., Thiruloga, S. V., and Pasricha, S. (2020).
Indra: Intrusion detection using recurrent autoen-
coders in automotive embedded systems.
Lee, S., Jo, H. J., Cho, A., Lee, D. H., and Choi, W.
(2022). Ttids: Transmission-resuming time-based in-
trusion detection system for controller area network
(can). IEEE Access, 10:52139–52153.
Marchetti, M. and Stabili, D. (2019). Read: Reverse engi-
neering of automotive data frames. IEEE Transactions
on Information Forensics and Security, 14(4):1083–
1097.
Markovitz, M. and Wool, A. (2017). Field classification,
modeling and anomaly detection in unknown can bus
networks. Vehicular Communications, 9.
Moriano, P., Bridges, R. A., and Iannacone, M. D. (2022).
Detecting can masquerade attacks with signal cluster-
ing similarity. ArXiv, abs/2201.02665.
M
¨
uter, M. and Asaj, N. (2011). Entropy-based anomaly de-
tection for in-vehicle networks. 2011 IEEE Intelligent
Vehicles Symposium (IV), pages 1110–1115.
Nolan, B. C., Graham, S., Mullins, B., and Kabban, C. S.
(2018). Unsupervised time series extraction from
controller area network payloads. In Proceedings of
the 2018 IEEE 88th Vehicular Technology Conference
(VTC-Fall), pages 1–5. IEEE.
Remy, P. (2020). Temporal convolutional networks for
keras. https://github.com/philipperemy/keras-tcn.
Song, H. M., Kim, H. R., and Kim, H. K. (2016). Intrusion
detection system based on the analysis of time inter-
vals of can messages for in-vehicle network. 2016
International Conference on Information Networking
(ICOIN), pages 63–68.
Verma, M. E., Bridges, R. A., Sosnowski, J. J., Hollifield,
S. C., and Iannacone, M. D. (2021). Can-d: A mod-
ular four-step pipeline for comprehensively decoding
controller area network data. IEEE Transactions on
Vehicular Technology, 70:9685–9700.
Young, C., Olufowobi, H., Bloom, G., and Zambreno, J.
(2019). Automotive intrusion detection based on con-
stant can message frequencies across vehicle driving
modes. In AutoSec ’19: Proceedings of the ACM
Workshop on Automotive Cybersecurity, pages 9–14.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
296