
drift both practically and theoretically is an interest-
ing path for further research.
ACKNOWLEDGEMENTS
We gratefully acknowledge funding from the Eu-
ropean Research Council (ERC) under the ERC
Synergy Grant Water-Futures (Grant agreement No.
951424).
REFERENCES
European Commission (2021). Artificial Intelligence Act.
Cardell-Oliver, R. and Carter-Turner, H. (2021). Activity-
aware privacy protection for smart water meters. In
8th ACM BuildSys, BuildSys ’21, page 31–40. Asso-
ciation for Computing Machinery.
Daniel, I., Pesantez, J., Letzgus, S., Khaksar Fasaee, M. A.,
Alghamdi, F., Berglund, E., Mahinthakumar, G., and
Cominola, A. (2022). A Sequential Pressure-Based
Algorithm for Data-Driven Leakage Identification and
Model-Based Localization in Water Distribution Net-
works. J. Water Resour. Plan. Manag., 148.
Eliades, D. G. and Polycarpou, M. M. (2010). A Fault Di-
agnosis and Security Framework for Water Systems.
IEEE Transactions on Control Systems Technology,
18(6):1254–1265.
G
¨
oz
¨
uac¸ık,
¨
O., B
¨
uy
¨
ukc¸akır, A., Bonab, H., and Can, F.
(2019). Unsupervised concept drift detection with a
discriminative classifier. In Proceedings of the 28th
ACM international conference on information and
knowledge management, pages 2365–2368.
Gretton, A., Borgwardt, K. M., Rasch, M. J., Sch
¨
olkopf,
B., and Smola, A. J. (2006). A kernel method for the
two-sample-problem. In NIPS 2006, pages 513–520.
Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Sch
¨
olkopf,
B., and Smola, A. J. (2007). A kernel statistical test of
independence. In NIPS 2007, pages 585–592.
Hinder, F., Artelt, A., and Hammer, B. (2020). Towards
non-parametric drift detection via dynamic adapting
window independence drift detection (DAWIDD). In
ICML 2020, volume 119, pages 4249–4259. PMLR.
Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B.
(2023a). On the Change of Decision Boundary and
Loss in Learning with Concept Drift. In IDA XXI, vol-
ume 13876, pages 182–194. Springer Nature Switzer-
land, Cham.
Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B.
(2023b). On the Hardness and Necessity of Super-
vised Concept Drift Detection:. In 12th ICPRAM,
pages 164–175, Lisbon, Portugal. SCITEPRESS.
Hinder, F., Vaquet, V., and Hammer, B. (2023c). One or
two things we know about concept drift – a survey on
monitoring evolving environments.
Hu, C., Li, M., Zeng, D., and Guo, S. (2018). A survey on
sensor placement for contamination detection in water
distribution systems. Wireless Networks, 24(2):647–
661.
Kolomogorov, A. (1933). Sulla determinazione empirica di
una legge didistribuzione. Giorn Dell’inst Ital Degli
Att, 4:89–91.
Lambert, A. (1994). Accounting for Losses: The Bursts and
Background Concept. Water and Environment Jour-
nal, 8(2):205–214.
Laucelli, D., Romano, M., Savi
´
c, D., and Giustolisi, O.
(2016). Detecting anomalies in water distribution net-
works using EPR modelling paradigm. Journal of Hy-
droinformatics, 18(3):409–427.
Li, Z., Wang, J., Yan, H., Li, S., Tao, T., and Xin, K. (2022).
Fast Detection and Localization of Multiple Leaks in
Water Distribution Network Jointly Driven by Simu-
lation and Machine Learning. J. Water Resour. Plan.
Manag., 148(9).
Marzola, I., Mazzoni, F., Alvisi, S., and Franchini, M.
(2022). Leakage Detection and Localization in a Wa-
ter Distribution Network through Comparison of Ob-
served and Simulated Pressure Data. J. Water Resour.
Plan. Manag., 148(1):04021096.
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J.,
Beaudoing, H. K., Landerer, F. W., and Lo, M.-H.
(2018). Emerging trends in global freshwater avail-
ability. Nature, 557(7707):651–659.
Romano, M., Kapelan, Z., and Savi
´
c, D. A. (2014). Auto-
mated Detection of Pipe Bursts and Other Events in
Water Distribution Systems. J. Water Resour. Plan.
Manag., 140(4):457–467.
Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig,
V., and Duviella, E. (2022). Leak Localization in
Water Distribution Networks Using Data-Driven and
Model-Based Approaches. J. Water Resour. Plan.
Manag., 148(5).
Rossman, L. A. (2000). EPANET 2: users manual. US
Environmental Protection Agency. Office of Research
and Development.
Steffelbauer, D. B., Deuerlein, J., Gilbert, D., Abraham, E.,
and Piller, O. (2022). Pressure-Leak Duality for Leak
Detection and Localization in Water Distribution Sys-
tems. J. Water Resour. Plan. Manag., 148(3).
Vaquet, V., Artelt, A., Brinkrolf, J., and Hammer, B.
(2022). Taking Care of Our Drinking Water: Deal-
ing with Sensor Faults in Water Distribution Net-
works. In ICANN 2022, volume 13530, pages 682–
693. Springer Nature Switzerland, Cham.
V
¨
or
¨
osmarty, C. J., McIntyre, P. B., Gessner, M. O., Dud-
geon, D., Prusevich, A., Green, P., Glidden, S., Bunn,
S. E., Sullivan, C. A., Liermann, C. R., et al. (2010).
Global threats to human water security and river bio-
diversity. nature, 467(7315):555–561.
Vrachimis, S. G., Eliades, D. G., Taormina, R., Kapelan, Z.,
Ostfeld, A., Liu, S., Kyriakou, M., Pavlou, P., Qiu, M.,
and Polycarpou, M. M. (2022). Battle of the Leakage
Detection and Isolation Methods. Journal of Water
Resources Planning and Management, 148(12).
Wang, X., Li, J., Liu, S., Yu, X., and Ma, Z. (2022). Mul-
tiple Leakage Detection and Isolation in District Me-
tering Areas Using a Multistage Approach. J. Water
Resour. Plan. Manag., 148(6).
Investigating the Suitability of Concept Drift Detection for Detecting Leakages in Water Distribution Networks
303