REFERENCES
Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. (2018). Efficient lifelong learning with a-gem.
arXiv preprint arXiv:1812.00420.
Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun,
S., Feng, W., Liu, Z., Xu, J., et al. (2019). Mmdetec-
tion: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155.
Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T.
(2021). A continual learning survey: Defying forget-
ting in classification tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.
Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020).
Embracing change: Continual learning in deep neural
networks. Trends in cognitive sciences.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.
LeCun, Y., Denker, J., and Solla, S. (1989). Optimal brain
damage. Advances in neural information processing
systems, 2.
Li, D., Tasci, S., Ghosh, S., Zhu, J., Zhang, J., and Heck,
L. (2019). Rilod: Near real-time incremental learning
for object detection at the edge. In Proceedings of
the 4th ACM/IEEE Symposium on Edge Computing,
pages 113–126.
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
(2016). Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710.
Li, W., Wu, Q., Xu, L., and Shang, C. (2018). Incremental
learning of single-stage detectors with mining mem-
ory neurons. In 2018 IEEE 4th International Con-
ference on Computer and Communications (ICCC),
pages 1981–1985. IEEE.
Li, Z. and Hoiem, D. (2017). Learning without forgetting.
IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Liu, C. and Wu, H. (2019). Channel pruning based on
mean gradient for accelerating convolutional neural
networks. Signal Processing, 156:84–91.
Luo, J.-H. and Wu, J. (2017). An entropy-based prun-
ing method for cnn compression. arXiv preprint
arXiv:1706.05791.
Mallya, A. and Lazebnik, S. (2018). Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 7765–7773.
Menezes, A. G., de Moura, G., Alves, C., and de Carvalho,
A. C. (2023). Continual object detection: A review
of definitions, strategies, and challenges. Neural Net-
works.
Mirzadeh, S. I., Chaudhry, A., Hu, H., Pascanu, R., Gorur,
D., and Farajtabar, M. (2021). Wide neural net-
works forget less catastrophically. arXiv preprint
arXiv:2110.11526.
Shaheen, K., Hanif, M. A., Hasan, O., and Shafique, M.
(2021). Continual learning for real-world autonomous
systems: Algorithms, challenges and frameworks.
arXiv preprint arXiv:2105.12374.
Shmelkov, K., Schmid, C., and Alahari, K. (2017). In-
cremental learning of object detectors without catas-
trophic forgetting. In Proceedings of the IEEE inter-
national conference on computer vision, pages 3400–
3409.
Tian, Z., Shen, C., Chen, H., and He, T. (2020). Fcos: A
simple and strong anchor-free object detector. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.
ul Haq, Q. M., Ruan, S.-J., Haq, M. A., Karam, S., Shieh,
J. L., Chondro, P., and Gao, D.-Q. (2021). An incre-
mental learning of yolov3 without catastrophic forget-
ting for smart city applications. IEEE Consumer Elec-
tronics Magazine.
Wang, J., Jiang, T., Cui, Z., and Cao, Z. (2021). Filter prun-
ing with a feature map entropy importance criterion
for convolution neural networks compressing. Neuro-
computing, 461:41–54.
Wu, X., Sahoo, D., and Hoi, S. C. (2020). Recent advances
in deep learning for object detection. Neurocomput-
ing, 396:39–64.
Zenke, F., Poole, B., and Ganguli, S. (2017). Continual
learning through synaptic intelligence. In Interna-
tional conference on machine learning, pages 3987–
3995. PMLR.
Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object
detection in 20 years: A survey. arXiv preprint
arXiv:1905.05055.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
474