
Bychkovsky, V., Paris, S., and E. Chan, F. D. (2011).
Learning photographic global tonal adjustment with a
database of input / output image pairs. In Conference
on Computer Vision and Pattern Recognition.
Can, H. and Brown, M. (2019). Beyond raw-rgb and srgb:
Advocating access to a colorimetric image state. In
Color and Imaging Conference.
Chen, C., Chen, Q., Xiu, J., and Koltun, V. (2018). Learning
to see in the dark. In Conference on Computer Vision
and Pattern Recognition.
Dang-Nguyen, D.-T., Pasquini, C., Conotter, V., and Boato,
G. (2015). Raise - a raw images dataset for digital
image forensics. In ACM Multimedia Systems Confer-
ence.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In Conference on Computer Vision
and Pattern Recognition.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Conference on
Computer Vision and Pattern Recognition.
Jocher, G., Chaurasia, A., Stoken, A., Borovec, J.,
NanoCode012, Kwon, Y., Michael, K., TaoXie, Fang,
J., imyhxy, Lorna, Yifu, Z., Wong, C., V, A., Montes,
D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvK-
itDe, Sonck, V., tkianai, yxNONG, Skalski, P., Hogan,
A., Nair, D., Strobel, M., and Jain, M. (2022). ultralyt-
ics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance
Segmentation.
Kantas, C., Antoniussen, B., Andersen, M. V., Munksø, R.,
Kotnala, S., Jensen, S. B., Møgelmose, A., Nørgaard,
L., and Moeslund, T. B. (2023). Raw instinct: Trust
your classifiers and skip the conversion. In Conference
on Pattern Recognition and Artificial Intelligence.
Li, Z., Lu, M., Zhang, X., Feng, X., Asif, M. S., and Ma, Z.
(2022). Efficient visual computing with camera raw
snapshots. In Conference on Computer Vision and
Pattern Recognition.
Liang, C., Chen, Y., Liu, Y., and Hsu, W. H. (2020). Raw
image deblurring. In IEEE Transactions on Multime-
dia, volume 24, pages 61–72.
Liu, Y.-L., Lai, W.-S., Chen, Y.-S., Kao, Y.-L., Yang, M.-H.,
Chuang, Y.-Y., and Huang, J.-B. (2020). Single-image
hdr reconstruction by learning to reverse the camera
pipeline. In Conference on Computer Vision and Pat-
tern Recognition.
Ljungbergh, W., Johnander, J., Petersson, C., and Felsberg,
M. (2023). Raw or cooked? object detection on raw
images. In Scandinavian Conference on Image Anal-
ysis.
Morawski, I., Chen, Y.-A., Lin, Y.-S., Dangi, S., He, K.,
and Hsu, W. H. (2022). Genisp: Neural isp for low-
light machine cognition. In Conference on Computer
Vision and Pattern Recognition.
Nam, S., Punnappurath, A., Brubaker, M. A., and Brown,
M. S. (2022). Learning srgb-to-raw-rgb de-rendering
with content-aware metadata. In Conference on Com-
puter Vision and Pattern Recognition.
Nguyen, R. and Brown, M. (2017). Raw image reconstruc-
tion using a self-contained srgb–jpeg image with small
memory overhead. In International Journal of Com-
puter Vision, volume 126(6), pages 637–650.
Omid-Zohoor, A., Young, C., and D. Ta, B. M. (2014). Pas-
calraw: Raw image database for object detection in
searchworks catalog. In Stanford Digital Repository.
Punnappurath, A. and Brown, M. S. (2020). Learning raw
image reconstruction-aware deep image compressors.
In IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, volume 42(4), pages 1013–1019.
Riechert, M. (2014). rawpy: Raw image processing for
python, a wrapper for libraw. Software available from
https://github.com/letmaik/rawpy.
Salih, Y., bt. Md-Esa, W., Malik, A. S., and Saad, N. (2012).
Tone mapping of hdr images: A review. In Interna-
tional Conference on Intelligent and Advanced Sys-
tems.
Waqas Zamir, S., Arora, A., Khan, S., Hayat, M., Shah-
baz Khan, F., Yang, M.-H., and Shao, L. (2020). Cy-
cleisp: Real image restoration via improved data syn-
thesis. In Conference on Computer Vision and Pattern
Recognition.
Wei, Z., Xiangyu, Z., Hongyu, W. S. G., and Xin, L.
(2021). Raw bayer pattern image synthesis for com-
puter vision-oriented image signal processing pipeline
design. In Conference on Computer Vision and Pat-
tern Recognition.
Xing, Y., Qian, Z., and Chen, Q. (2021). Invertible image
signal processing. In Conference on Computer Vision
and Pattern Recognition.
Yuan, L. and Sun, J. (2011). High quality image reconstruc-
tion from raw and jpeg image pair. In International
Conference on Computer Vision.
Zhang, X., Chen, Q., Ng, R., and Koltun, V. (2019). Zoom
to learn, learn to zoom. In Conference on Computer
Vision and Pattern Recognition.
Zhang, X., Zhang, L., and Lou, X. (2022). A raw image-
based end-to-end object detection accelerator using
hog features. In IEEE Transactions on Circuits and
Systems I: Regular Papers, volume 69(1), pages 322–
333.
Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., and Zuo,
W. (2021). Learning raw-to-srgb mappings with inac-
curately aligned supervision. In International Confer-
ence on Computer Vision.
Enabling RAW Image Classification Using Existing RGB Classifiers
129