ence on image processing (ICIP), pages 3886–3890.
IEEE.
Li, K., Cheng, G., Bu, S., and You, X. (2017). Rotation-
insensitive and context-augmented object detection in
remote sensing images. IEEE Transactions on Geo-
science and Remote Sensing, 56(4):2337–2348.
Li, K., Wan, G., Cheng, G., Meng, L., and Han, J. (2020).
Object detection in optical remote sensing images: A
survey and a new benchmark. ISPRS journal of pho-
togrammetry and remote sensing, 159:296–307.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017a). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017b). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part I 14,
pages 21–37. Springer.
Oliva, A. and Torralba, A. (2007). The role of context
in object recognition. Trends in cognitive sciences,
11(12):520–527.
Perko, R. and Leonardis, A. (2010). A framework
for visual-context-aware object detection in still im-
ages. Computer Vision and Image Understanding,
114(6):700–711.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Reis, D., Kupec, J., Hong, J., and Daoudi, A. (2023).
Real-time flying object detection with yolov8. arXiv
preprint arXiv:2305.09972.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Wang, C., Bochkovskiy, A., and Liao, H. (2022a). Yolov7:
Trainable bag-of-freebies sets new state-of-the-art for
real-time object detectors. arxiv 2022. arXiv preprint
arXiv:2207.02696.
Wang, J., Xiao, W., and Ni, T. (2020). Efficient object
detection method based on improved yolov3 network
for remote sensing images. In 2020 3rd International
Conference on Artificial Intelligence and Big Data
(ICAIBD), pages 242–246. IEEE.
Wang, K., Liew, J. H., Zou, Y., Zhou, D., and Feng, J.
(2019). Panet: Few-shot image semantic segmenta-
tion with prototype alignment. In proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 9197–9206.
Wang, W., Tan, X., Zhang, P., and Wang, X. (2022b). A
cbam based multiscale transformer fusion approach
for remote sensing image change detection. IEEE
Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 15:6817–6825.
Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-
local neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 7794–7803.
Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). Cbam:
Convolutional block attention module. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 3–19.
Xu, J., Sun, X., Zhang, D., and Fu, K. (2014). Auto-
matic detection of inshore ships in high-resolution re-
mote sensing images using robust invariant general-
ized hough transform. IEEE geoscience and remote
sensing letters, 11(12):2070–2074.
Yang, X., Yan, J., Liao, W., Yang, X., Tang, J., and He, T.
(2022). Scrdet++: Detecting small, cluttered and ro-
tated objects via instance-level feature denoising and
rotation loss smoothing. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 45(2):2384–
2399.
Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, Z.,
Sun, X., and Fu, K. (2019). Scrdet: Towards more ro-
bust detection for small, cluttered and rotated objects.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 8232–8241.
Yue, K., Sun, M., Yuan, Y., Zhou, F., Ding, E., and Xu,
F. (2018). Compact generalized non-local network.
Advances in neural information processing systems,
31.
Zhang, G., Lu, S., and Zhang, W. (2019). Cad-net: A
context-aware detection network for objects in remote
sensing imagery. IEEE Transactions on Geoscience
and Remote Sensing, 57(12):10015–10024.
Zhang, G., Xu, W., Zhao, W., Huang, C., Yk, E. N., Chen,
Y., and Su, J. (2021). A multiscale attention network
for remote sensing scene images classification. IEEE
Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 14:9530–9545.
Zhang, L.-g., Wang, L., Jin, M., Geng, X.-s., and Shen,
Q. (2022). Small object detection in remote sensing
images based on attention mechanism and multi-scale
feature fusion. International Journal of Remote Sens-
ing, 43(9):3280–3297.
Zhang, S., Mu, X., Kou, G., and Zhao, J. (2020). Object de-
tection based on efficient multiscale auto-inference in
remote sensing images. IEEE Geoscience and Remote
Sensing Letters, 18(9):1650–1654.
Zhang, W., Sun, X., Fu, K., Wang, C., and Wang, H.
(2013). Object detection in high-resolution remote
sensing images using rotation invariant parts based
model. IEEE Geoscience and Remote Sensing Letters,
11(1):74–78.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
138