Water Temperature,” IEEE/ASME Transactions on
Mechatronics, vol. 24, no. 4, pp. 1798–1807, Aug.
2019.
S. A. Mascaro and H. Harry Asada, “Wet Shape Memory
Alloy Actuators for Active Vasculated Robotic Flesh”.
A. Díaz Lantada, A. De Blas Romero, and E. C. Tanarro,
“Micro-vascular shape-memory polymer actuators with
complex geometries obtained by laser
stereolithography,” Smart Mater Struct, vol. 25, no. 6,
p. 065018, Jun. 2016.
R. Pfeifer et al., “Noninvasive induction implant heating:
An approach for contactless altering of mechanical
properties of shape memory implants,” Med Eng Phys,
vol. 35, no. 1, pp. 54–62, Jan. 2013.
C. W. Müller et al., “Transcutaneous electromagnetic
induction heating of an intramedullary nickel–titanium
shape memory implant,” Int Orthop, vol. 38, no. 12, pp.
2551–2557, Dec. 2014.
J. Zhou et al., “Hyperthermia by a nitinol stent in an
alternating magnetic field: Safety and feasibility in
rabbit esophageal cancer,” Progress in Natural Science,
vol. 19, no. 12, pp. 1713–1719, Dec. 2009.
R. N. Saunders, J. G. Boyd, D. J. Hartl, J. K. Brown, F. T.
Calkins, and D. C. Lagoudas, “A validated model for
induction heating of shape memory alloy actuators,”
Smart Mater Struct, vol. 25, no. 4, p. 045022, Apr.
2016.
M. Kadic, T. Bückmann, N. Stenger, M. Thiel, and M.
Wegener, “On the practicability of pentamode
mechanical metamaterials,” Appl Phys Lett, vol. 100,
no. 19, p. 191901, May 2012.
T. Frenzel, M. Kadic, and M. Wegener, “Three-
dimensional mechanical metamaterials with a twist,”
Science (1979), vol. 358, no. 6366, pp. 1072–1074,
2017.
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener,
“3D metamaterials,” Nature Reviews Physics, vol. 1,
no. 3, pp. 198–210, Mar. 2019.
K. S. Riley, K. J. Ang, K. A. Martin, W. K. Chan, J. A.
Faber, and A. F. Arrieta, “Encoding multiple permanent
shapes in 3D printed structures,” Mater Des, vol. 194,
p. 108888, Sep. 2020.
Y. Liu et al., “Synergistic effect enhanced shape recovery
behavior of metal-4D printed shape memory polymer
hybrid composites,” Compos B Eng, vol. 179, p.
107536, Dec. 2019.
S. Puthanveetil, W. C. Liu, K. S. Riley, A. F. Arrieta, and
H. le Ferrand, “Programmable multistability for 3D
printed reinforced multifunctional composites with
reversible shape change,” Compos Sci Technol, vol.
217, p. 109097, Jan. 2022.
J. Feng, J. Fu, Z. Lin, C. Shang, and B. Li, “A review of the
design methods of complex topology structures for 3D
printing”, doi: 10.1186/s42492-018-0004-3.
A. Díaz Lantada, A. De, B. Romero, and E. C. Tanarro,
“Micro-vascular shape-memory polymer actuators with
complex geometries obtained by laser
stereolithography,” 2016, doi: 10.1088/0964-
1726/25/6/065018.
N. Shayesteh Moghaddam et al., “Achieving superelasticity
in additively manufactured NiTi in compression
without post-process heat treatment,” Sci Rep, vol. 9,
no. 1, p. 41, Dec. 2019.
C. Wei, Z. Zhang, D. Cheng, Z. Sun, M. Zhu, and L. Li,
“An overview of laser-based multiple metallic material
additive manufacturing: from macro- to micro-scales,”
International Journal of Extreme Manufacturing, vol. 3,
no. 1, p. 012003, Jan. 2021.
J. Gan et al., “Effect of laser energy density on the evolution
of Ni4Ti3 precipitate and property of NiTi shape
memory alloys prepared by selective laser melting,” J
Alloys Compd, vol. 869, p. 159338, Jul. 2021.
C. Zhao, H. Liang, S. Luo, J. Yang, and Z. Wang, “The
effect of energy input on reaction, phase transition and
shape memory effect of NiTi alloy by selective laser
melting,” J Alloys Compd, vol. 817, p. 153288, Mar.
2020.
L. Xue et al., “Controlling martensitic transformation
characteristics in defect-free NiTi shape memory alloys
fabricated using laser powder bed fusion and a process
optimization framework,” Acta Mater, vol. 215, p.
117017, Aug. 2021.
G. Mani, D. Porter, K. Grove, S. Collins, A. Ornberg, and
R. Shulfer, “Surface finishing of Nitinol for implantable
medical devices: A review,” J Biomed Mater Res B
Appl Biomater, Jun. 2022.
C. Wen et al., “Mechanical behaviors and biomedical
applications of shape memory materials: A review,”
AIMS Mater Sci, vol. 5, no. 4, pp. 559–590, 2018.
B. L. Wang, L. Li, and Y. F. Zheng, “In vitro cytotoxicity
and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and
Ti-Nb-Hf biomedical shape memory alloys,”
Biomedical Materials, vol. 5, no. 4, p. 044102, Aug.
2010.
J. Lu, D. Khang, and T. J. Webster, “Greater endothelial
cell responses on submicron and nanometer rough
titanium surfaces,” J Biomed Mater Res A, vol. 9999A,
p. NA-NA, 2010.
S. K. Sinha, “Additive manufacturing (AM) of medical
devices and scaffolds for tissue engineering based on
3D and 4D printing,” in 3D and 4D Printing of Polymer
Nanocomposite Materials, Elsevier, 2020, pp. 119-160.
I. Lukin et al., “Can 4D bioprinting revolutionize drug
development?,” Expert Opin Drug Discov, vol. 14, no.
10, pp. 953–956, Oct. 2019.
L. Ionov, “4D Biofabrication: Materials, Methods, and
Applications,” Adv Healthc Mater, vol. 7, no. 17, p.
1800412, Sep. 2018.
S. Akbari, A. H. Sakhaei, S. Panjwani, K. Kowsari, and Q.
Ge, “Shape memory alloy based 3D printed composite
actuators with variable stiffness and large reversible
deformation,” Sens Actuators A Phys, vol. 321, p.
112598, Apr. 2021.
C. de Maria, L. di Pietro, A. Ravizza, A. D. Lantada, and A.
D. Ahluwalia, “Open-source medical devices:
Healthcare solutions for low-, middle-, and high-
resource settings,” Clinical Engineering Handbook,
Second Edition, pp. 7–14, Jan. 2020.