capable of learning a latent space that, besides parti-
cle area, can describe other important image features.
ACKNOWLEDGEMENTS
This project was supported by the Science, Tech-
nology and Innovations Ministry of Brazil, with re-
sources from law nº 8.2428 of October 23, 1991
within the Softex
1
National Innovation Priority pro-
gram, coordinated by Softex and EDGE Innovation
Center and published by [RESIDENCIA EM TIC ˆ
09(process[01245.005714/2022-18])].
REFERENCES
Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoen-
coders. arXiv preprint arXiv:2003.05991.
Bryan, A. K., Goranov, A., Amon, A., and Manalis, S. R.
(2010). Measurement of mass, density, and volume
during the cell cycle of yeast. Proceedings of the Na-
tional Academy of Sciences, 107(3):999–1004.
Castiglioni, M., Rivoira, L., Ingrando, I., Del Bubba, M.,
and Bruzzoniti, M. C. (2021). Characterization tech-
niques as supporting tools for the interpretation of
biochar adsorption efficiency in water treatment: A
critical review. Molecules, 26(16).
De Pastina, A., Maillard, D., and Villanueva, L. (2018).
Fabrication of suspended microchannel resonators
with integrated piezoelectric transduction. Microelec-
tronic Engineering, 192:83–87.
Ignatans, R., Ziatdinov, M., Vasudevan, R., Valleti, M.,
Tileli, V., and Kalinin, S. V. (2022). Latent mecha-
nisms of polarization switching from in situ electron
microscopy observations. Advanced Functional Ma-
terials, 32(23):2100271.
Kalinin, S. V., Dyck, O., Jesse, S., and Ziatdinov, M.
(2021a). Exploring order parameters and dynamic
processes in disordered systems via variational au-
toencoders. Science Advances, 7(17):eabd5084.
Kalinin, S. V., Zhang, S., Valleti, M., Pyles, H., Baker, D.,
De Yoreo, J. J., and Ziatdinov, M. (2021b). Disentan-
gling rotational dynamics and ordering transitions in
a system of self-organizing protein nanorods via ro-
tationally invariant latent representations. ACS nano,
15(4):6471–6480.
Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A re-
view on genetic algorithm: past, present, and future.
Multimedia Tools and Applications, 80:8091–8126.
Li, P. and Huang, T. J. (2018). Applications of acoustoflu-
idics in bioanalytical chemistry. Analytical chemistry,
91(1):757–767.
Maric, D., Maric, I., and Barker, J. L. (1998). Buoyant den-
sity gradient fractionation and flow cytometric analy-
1
https://softex.br/
sis of embryonic rat cortical neurons and progenitor
cells. Methods, 16(3):247–259.
Massa, L., Vieira, T. F., de Medeiros Martins, A., Ara
´
ujo,
´
I. B. Q., Silva, G. T., and Santos, H. D. A. (2023).
Model fitting on noisy images from an acoustoflu-
idic micro-cavity for particle density measurement. In
VISIGRAPP.
Minelli, C., Sikora, A., Garcia-Diez, R., Sparnacci, K.,
Gollwitzer, C., Krumrey, M., and Shard, A. G. (2018).
Measuring the size and density of nanoparticles by
centrifugal sedimentation and flotation. Analytical
Methods, 10(15):1725–1732.
Pl
¨
uisch, C. S., Stuckert, R., and Wittemann, A. (2021). Di-
rect measurement of sedimentation coefficient distri-
butions in multimodal nanoparticle mixtures. Nano-
materials, 11(4).
Pratella, D., Ait-El-Mkadem Saadi, S., Bannwarth, S.,
Paquis-Fluckinger, V., and Bottini, S. (2021). A sur-
vey of autoencoder algorithms to pave the diagnosis
of rare diseases. International journal of molecular
sciences, 22(19):10891.
Rasouli, R., Villegas, K. M., and Tabrizian, M. (2023).
Acoustofluidics–changing paradigm in tissue engi-
neering, therapeutics development, and biosensing.
Lab on a Chip, 23(5):1300–1338.
Ullmann, C., Babick, F., Koeber, R., and Stintz, M. (2017).
Performance of analytical centrifugation for the parti-
cle size analysis of real-world materials. Powder Tech-
nology, 319:261–270.
Uttinger, M. J., Boldt, S., Wawra, S. E., Freiwald, T. D.,
Damm, C., Walter, J., Lerche, D., and Peukert, W.
(2020). New prospects for particle characteriza-
tion using analytical centrifugation with sector-shaped
centerpieces. Particle & Particle Systems Characteri-
zation, 37(7):2000108.
Wu, M., Ozcelik, A., Rufo, J., Wang, Z., Fang, R., and
Jun Huang, T. (2019). Acoustofluidic separation of
cells and particles. Microsystems & nanoengineering,
5(1):32.
Xie, Y., Bachman, H., and Huang, T. J. (2019). Acoustoflu-
idic methods in cell analysis. TrAC Trends in Analyti-
cal Chemistry, 117:280–290.
Yazdani, A. M. and S¸ is¸man, A. (2020). A novel numeri-
cal model to simulate acoustofluidic particle manipu-
lation. Physica Scripta, 95(9):095002.
Zhao, Y., Lai, H. S. S., Zhang, G., Lee, G.-B., and Li, W. J.
(2014). Rapid determination of cell mass and density
using digitally controlled electric field in a microflu-
idic chip. Lab on a Chip, 14(22):4426–4434.
Assessing the Performance of Autoencoders for Particle Density Estimation in Acoustofluidic Medium: A Visual Analysis Approach
443