
Assisted by Scientific Computing (INCT-MACC) –
grant 2014/50889-7.
REFERENCES
Ahmed, S., Saifuddin, K. M., Ahmed, A. S., Aowlad Hos-
sain, A., and Iqbal, M. T. (2017). Identification and
volume estimation of dental caries using CT image.
ICTP, pages 48–51.
Al Kheraif, A. A., Wahba, A. A., and Fouad, H. (2019). De-
tection of dental diseases from radiographic 2d dental
image using hybrid graph-cut technique and convolu-
tional neural network. Measurement, 146:333–342.
Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.
Bro, R. and Smilde, A. K. (2014). Principal component
analysis. Analytical methods, 6(9):2812–2831.
Chen, R. and Zhang, H. (2017). Large-scale 3D Reconstruc-
tion with an R-based Analysis Workflow. Proceedings
Big Data Computing, pages 85–93.
Datta, S., Chaki, N., and Modak, B. (2019). A Novel Tech-
nique to Detect Caries Lesion Using Isophote Con-
cepts. IRBM, 40(3):174–182.
Ezhov, M., Gusarev, M., Golitsyna, M., Yates, J. M.,
Kushnerev, E., Tamimi, D., Aksoy, S., Shumilov, E.,
Sanders, A., and Orhan, K. (2021). Clinically appli-
cable artificial intelligence system for dental diagnosis
with CBCT. Scientific Reports, 11(1).
Felemban, O. M., Loo, C. Y., and Ramesh, A. (2020). Ac-
curacy of Cone-beam Computed Tomography and Ex-
traoral Bitewings Compared to Intraoral Bitewings in
Detection of Interproximal Caries. The Journal of
Contemporary Dental Practice, 21(12):1361–1367.
Geetha, V., Aprameya, K. S., and Hinduja, D. M. (2020).
Dental caries diagnosis in digital radiographs using
back-propagation neural network. Health Inf Sci Syst,
8(1):8.
Gugnani, N. and Pandit, I. (2011). International caries de-
tection and assessment system (ICDAS): A new con-
cept. International Journal of Clinical Pediatric Den-
tistry, 4(2):93–100.
Imak, A., Celebi, A., Siddique, K., Turkoglu, M., Sengur,
A., and Salam, I. (2022). Dental Caries Detection
Using Score-Based Multi-Input Deep Convolutional
Neural Network. IEEE Access, 10:18320–18329.
Japkowicz, N. and Shah, M. (2015). Performance evalua-
tion in machine learning. Machine Learning in Radi-
ation Oncology: Theory and Applications, pages 41–
56.
Jiang, L., Cai, Z., Wang, D., and Jiang, S. (2007). Survey
of improving k-nearest-neighbor for classification. In
Fourth international conference on fuzzy systems and
knowledge discovery (FSKD 2007), volume 1, pages
679–683. IEEE.
Jusman, Y., Widyaningrum, A., and Puspita, S. (2022a). Al-
gorithm of Caries Level Image Classification Using
Multilayer Perceptron Based Texture Features. Cy-
berneticsCom, pages 168–173.
Jusman, Y., Widyaningrum, A., Tyassari, W., Puspita, S.,
and Saleh, E. (2022b). Classification of Caries X-Ray
Images using Multilayer Perceptron Models Based
Shape Features. ICITDA, pages 1–6.
Lakshmi, M. M. and Chitra, P. (2020). Classification of
Dental Cavities from X-ray images using Deep CNN
algorithm. ICOEI, pages 774–779.
L
¨
ofstedt, T., Brynolfsson, P., Asklund, T., Nyholm, T., and
Garpebring, A. (2019). Gray-level invariant haralick
texture features. PloS one, 14(2):e0212110.
Mingqiang, Y., Kidiyo, K., Joseph, R., et al. (2008). A
survey of shape feature extraction techniques. Pattern
recognition, 15(7):43–90.
Prokop, R. J. and Reeves, A. P. (1992). A survey of
moment-based techniques for unoccluded object rep-
resentation and recognition. CVGIP: Graphical Mod-
els and Image Processing, 54(5):438–460.
Ramana Kumari, A., Nagaraja Rao, S., and Ramana Reddy,
P. (2022). Design of hybrid dental caries segmen-
tation and caries detection with meta-heuristic-based
ResneXt-RNN. Biomedical Signal Processing and
Control, 78:103961.
Rathee, M. and Sapra, A. (2023). Dental Caries. In Stat-
Pearls. StatPearls Publishing, Treasure Island (FL).
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. pages 234–241.
Setzer, F. C., Hinckley, N., Kohli, M. R., and Karabucak,
B. (2017). A Survey of Cone-beam Computed To-
mographic Use among Endodontic Practitioners in the
United States. J Endod, 43(5):699–704.
Singh, P. and Sehgal, P. (2017). Automated caries detection
based on Radon transformation and DCT. ICCCNT,
pages 1–6.
Sornam, M. and Prabhakaran, M. (2017). A new lin-
ear adaptive swarm intelligence approach using back
propagation neural network for dental caries classifi-
cation. ICPCSI, pages 2698–2703.
Verma, D., Puri, S., Prabhu, S., and Smriti, K. (2020).
Anomaly detection in panoramic dental x-rays using
a hybrid Deep Learning and Machine Learning ap-
proach. TENCON, pages 263–268.
Zhu, H., Cao, Z., Lian, L., Ye, G., Gao, H., and Wu,
J. (2022). CariesNet: a deep learning approach for
segmentation of multi-stage caries lesion from oral
panoramic X-ray image. Neural Comput Appl, pages
1–9.
Segmentation and Classification of Dental Caries in Cone Beam Tomography Images Using Machine Learning and Image Processing
435