be imported, processed and prepared in the form of
directed and weighted graphs by combining different
components. These graphs now form the basis for
detecting attacks on IT systems with the help of end-
to-end tracking. Due to the very modular structure of
the framework and the associated plug-ins and rule
modules, it can be adapted to the different
requirements of the enterprise classes and associated
system architectures (see Section 2). By classifying
all source systems to be connected, requirement
profiles can be defined for a group of systems, which
then enable the systems to be connected via a
common or unified ingest process. User-defined rule
modules for different types and patterns of attacks, as
described in Section 3, then enable a meaningful
linking of the data and a fine-grained tracking of rule
violations. The use of intelligent systems or
knowledge databases can have a supporting effect
here.
The entire process uses a multi-level or
hierarchical pseudonymisation procedure (see
Section 3) that protects the personal data of clients,
employees, students or other persons from whom data
is collected. Based on the policies of the enterprise
classes, the data store allows, for example, the simple
deletion of data of a client that is older than x days.
As the graphs are based directly on this data, they can
be deleted together with the data without the risk of a
hanging reference.
By using realistic data formats in the design of the
sample data used, related to the expected formats of
real data and log data of industry-standard Software
based on information and requirements from industry
cooperation’s, it has already been shown that the
result graphs have a high potential to detect real and
sophisticated attacks within industry.
REFERENCES
ArangoDB (2023), ArangoDB Inc. Graphenda
tenbanksoftware. Version 3.9.7. URL: https://
github.com/arangodb/arangodb/tree/3.9.7, visited on
23/10/2023
DSGVO (2016) - VERORDNUNG (EU) 2016/679 DES
EUROPÄISCHEN PARLAMENTS UND DES
RATES (2016) - vom 27.4.2016 (Amtsblatt L 119 vom
4.5.2016, S. 1, ber. Amtsblatt L 314 vom 22.11.2016,
S. 72, Amtsblatt L 127 vom 23.5.2018, S. 2). URL:
https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?
uri=CELEX:32016R0679
ENISA Best Practices (2019), European Union Agency for
Cybersecurity u. a. Pseudonymisation techniques and
best practices: recommendations on shaping technology
according to data protection and privacy provisions.
Hrsg. von I Agrafiotis, A Bourka und P Drogkaris.
Publications Office, 2019. DOI: 10.2824/247711.
ENISA Advanced Techniques (2022), European Union
Agency for Cybersecurity u. a. Data pseudonymisation
: advanced techniques and use cases : technical analysis
of cybersecurity measures in data protection and
privacy. Hrsg. von P Drogkaris und A Bourka.
European Union Agency for Cybersecurity, 2022. DOI:
10.2824/860099.
HashiCorp (2023), HashiCorp. Vault. Geheimnisda
tenspeicher. Version 1.12.2. URL: https://github.com/
hashicorp/vault/tree/v1.12.2, visited on 23/10/2023
Istio (2023), Cloud Native Computing Foundation. Istio.
Kubernetes Service-Mesh. Version 1.16.1. URL:
https://istio.io/latest/news/releases/1.16.x/announcing-
1.16.1/, visited on 23/10/2023
Kubernetes (2023), Cloud Native Computing Foundation.
Container-Orchestrierungssoftware. Version 1.24.6.
URL: https://github.com/kubernetes/kubernetes/tree/
v1.24.6 visited on 23/10/2023
Mihaela, L. C. (2020) „Current security threats in the
national and international context“. In: Journal of
Accounting and Management Information Systems
19.4 (2 2020), S. 351–378. ISSN: 1583-4387. DOI:
10.24818/jamis.2020.02007.
Ping C., Lieven D. and Christophe H. (2014). „A Study on
Advanced Persistent Threats“. In: Communications and
Multimedia Security. Hrsg. von Bart De Decker und
André Zúquete. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, S. 63–72. ISBN: 978-3-662-44885-
4. DOI: 10.1007/978-3-662-44885-4_5.
Schwartmann R. and Weiß S. (2019), Anforderungen an
den datenschutzkonformen Einsatz von
Pseudonymisierungslösungen. Version 1.01. 2019.
URL: https://www.gdd.de/downloads/anforderungen-
an-datenschutzkonforme-pseudonymisierung visited
on 23/10/2023
Dr. Siller Betriebsberatung and Training Prof. (FH) Mag.
Dr. Helmut Siller MSc. (2018), „Audit Trail“. In:
Gabler Wirtschaftslexikon 53401.276494 (2018). URL:
https://wirtschaftslexikon.gabler.de/definition/audit-
trail-53401/version-276494, visited on 23/10/2023
Weir G. et. al (2017) „Cloud accounting systems, the audit
trail, forensics and the EU GDPR: how hard can it be?“
In: British Accounting & Finance Association (BAFA)
Annual Conference 2017.63134/
Wheeler D. A. (2005), „Countering trusting trust through
diverse double-compiling“. In: 21st Annual Computer
Security Applications Conference (ACSAC’05). 2005,
13 pp.–48. DOI: 10.1109/CSAC.2005.17.