Cover, T. M. and Hart, P. E. (1967). Nearest Neighbor Pat-
tern Classification. IEEE Trans. on Information The-
ory, 13(1):21–27.
de Barros, R. S. M., Santos, S. G. T. d. C., and Barddal, J. P.
(2022). Evaluating k-NN in the Classification of Data
Streams with Concept Drift. arxiv.org, 1.
DeCoste, D. (2012). Anytime Interval-Valued Outputs for
Kernel Machines: Fast Support Vector Machine Clas-
sification via Distance Geometry. In Proceedings of
the 19th ICML, volume 9, pages 99–106.
Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern
Classification. Wiley.
Esmeir, S. and Markovitch, S. (2007). Anytime induction of
cost-sensitive trees. Advances in Neural Information
Processing Systems, 20.
F1-score. F1-score https://en.wikipedia.org/wiki/F-score.
Ferchichi, H. and Akaichi, J. (2016). Using Mapreduce for
Efficient Parallel Processing of Continuous K nearest
Neighbors in Road Networks. Journal of Software and
Systems Development, pages 1–16.
Goyal, P., Challa, J. S., Kumar, D., Bhat, A., Balasubra-
maniam, S., and Goyal, N. (2020). Grid-R-tree: a
data structure for efficient neighborhood and nearest
neighbor queries in data mining. JDSA, 10(1):25–47.
Guttman, A. (1984). R-trees: A dynamic index structure for
spatial searching. ACM SIGMOD Record, 14(2):47–
57.
Hidalgo, J. I. G., Santos, S. G. T., and de Barros, R. S. M.
(2023). Paired k-NN learners with dynamically ad-
justed number of neighbors for classification of drift-
ing data streams. KAIS, 65(4):1787–1816.
Hjaltason, G. R. and Samet, H. (1999). Distance browsing
in spatial databases. ACM Transactions on Database
Systems, 24(2):265–318.
Hu, H., Dey, D., Hebert, M., and Andrew Bagnell, J. (2019).
Learning anytime predictions in neural networks via
adaptive loss balancing. In 33rd AAAI Conference,
pages 3812–3821.
KDD CUP (1999). http://kdd.ics.uci.edu/databases/ kdd-
cup99/kddcup99.html.
Kranen, P., Assent, I., Baldauf, C., and Seidl, T. (2011a).
The ClusTree: Indexing micro-clusters for anytime
stream mining. Knowledge and Information Systems,
29(2):249–272.
Kranen, P., Hassani, M., and Seidl, T. (2012). BT* -
An advanced algorithm for anytime classification. In
Proceedings-SSDM, pages 298–315.
Kranen, P., Reidl, F., Villaamil, F. S., and Seidl, T. (2011b).
Hierarchical clustering for real-time stream data with
noise. In Proceedings - SSDBM, page 405–413.
Lemes, C. I., Silva, D. F., and Batista, G. E. (2014). Adding
diversity to rank examples in anytime nearest neighbor
classification. In Proceedings - 13th ICMLA, pages
129–134.
MPI. MPI : A message-passing interface standard
https://www.mcs.anl.gov/research/projects/mpi/.
Nair, P. and Kashyap, I. (2020). Classification of medical
image data using k nearest neighbor and finding the
optimal k value. Int. Journal of Scientific and Tech-
nology Research, 9(4):221–226.
Ram
´
ırez-Gallego, S., Krawczyk, B., Garc
´
ıa, S., W
´
ozniak,
M., Ben
´
ıtez, J. M., and Herrera, F. (2017). Nearest
neighbor classification for high-speed big data streams
using spark. IEEE Trans on Systems, Man, and Cyber-
netics: Systems, 47(10):2727–2739.
Roseberry, M., Krawczyk, B., Djenouri, Y., and Cano, A.
(2021). Self-adjusting k nearest neighbors for con-
tinual learning from multi-label drifting data streams.
Neurocomputing, 442:10–25.
Rossi, R. A. and Ahmed, N. K. (2015). The network data
repository with interactive graph analytics and visual-
ization. In Proceedings - AAAI, page 4292–4293.
Shinde, A. V. and Patil, D. D. (2023). A Multi-Classifier-
Based Recommender System for Early Autism Spec-
trum Disorder Detection using Machine Learning.
Healthcare Analytics, 4(June):100211.
Sun, Y., Pfahringer, B., Gomes, H. M., and Bifet, A. (2022).
Soknl: A novel way of integrating k-nearest neigh-
bours with adaptive random forest regression for data
streams. Data Mining and Knowledge Discovery,
36(5):2006–2032.
Susheela Devi, V. and Meena, L. (2017). Parallel MCNN
(pMCNN) with Application to Prototype Selection on
Large and Streaming Data. JAISCR, 7(3):155–169.
Ueno, K., Xi, A., Keogh, E., and Lee, D. J. (2006). Any-
time classification using the nearest neighbor algo-
rithm with applications to stream mining. In Proceed-
ings - IEEE ICDM, pages 623–632.
Venkataravana Nayak, K., Arunalatha, J., and Venugopal,
K. (2021). Ir-ff-knn: Image retrieval using feature
fusion with k-nearest neighbour classifier. In 2021
Workshop on Algorithm and Big Data, page 86–89.
Wu, G., Zhao, Z., Fu, G., Wang, H., Wang, Y., Wang, Z.,
Hou, J., and Huang, L. (2019). A fast k nn-based ap-
proach for time sensitive anomaly detection over data
streams. In Proceedings-ICCS, pages 59–74.
Xu, W., Miranker, D. P., Mao, R., and Ramakrishnan,
S. (2008). Anytime K-nearest neighbor search for
database applications. In Proceedings - International
Workshop on SISAP, pages 139–148.
A Hierarchical Anytime k-NN Classifier for Large-Scale High-Speed Data Streams
287