Ehmer, J., Granado, B., Denoulet, J., Savaria, Y., and David,
J.-P. (2022). Low complexity shallow neural network
with improved false negative rate for cyber intrusion
detection systems. In 2022 20th IEEE Interregional
NEWCAS Conference (NEWCAS). IEEE.
Jeune, L. L., Goedeme, T., and Mentens, N. (2022).
Feature dimensionality in cnn acceleration for high-
throughput network intrusion detection. In 2022 32nd
International Conference on Field-Programmable
Logic and Applications (FPL). IEEE.
Liu, L., Wang, P., Lin, J., and Liu, L. (2021). Intru-
sion detection of imbalanced network traffic based on
machine learning and deep learning. IEEE Access,
9:7550–7563.
Murovi
ˇ
c, T. and Trost, A. (2019). Massively parallel com-
binational binary neural networks for edge processing.
Elektrotehniski Vestnik, 86(1/2):47–53.
Murovi
ˇ
c, T. and Trost, A. (2020). Resource-optimized com-
binational binary neural network circuits. Microelec-
tron. J., 97(C).
Murovi
ˇ
c, T. and Trost, A. (2021). Genetically optimized
massively parallel binary neural networks for intru-
sion detection systems. Computer Communications,
179:1–10.
Ngo, D.-M., Temko, A., Murphy, C. C., and Popovici,
E. (2021). Fpga hardware acceleration framework
for anomaly-based intrusion detection system in iot.
In 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL). IEEE.
Ngo, D.-M., Tran-Thanh, B., Dang, T., Tran, T., Thinh,
T. N., and Pham-Quoc, C. (2019). High-Throughput
Machine Learning Approaches for Network Attacks
Detection on FPGA, page 47–60. Springer Interna-
tional Publishing.
Tahir, M. A., Kittler, J., and Yan, F. (2012). Inverse ran-
dom under sampling for class imbalance problem and
its application to multi-label classification. Pattern
Recognition, 45(10):3738–3750.
Umoroglu, Y., Fraser, N. J., and Akhauri, Y.
(2023). Xilinx/Logicnets. [online] Available:
https://github.com/Xilinx/logicnets.
Umuroglu, Y. (2021). The unsw-nb15 dataset with bina-
rized features.
Umuroglu, Y., Akhauri, Y., Fraser, N. J., and Blott,
M. (2020). Logicnets: Co-designed neural net-
works and circuits for extreme-throughput applica-
tions. In 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL). IEEE.
Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott,
M., Leong, P., Jahre, M., and Vissers, K. (2017).
Finn: A framework for fast, scalable binarized
neural network inference. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17. ACM.
Vre
ˇ
ca, J., Ivanov, I., Papa, G., and Biasizzo, A. (2021). De-
tecting network intrusion using binarized neural net-
works. In 2021 IEEE 7th World Forum on Internet of
Things (WF-IoT). IEEE.
Wang, H. and Huang, H. (2018). Lad-smote: A new over-
sampling method based on locally adaptive distance.
In 2018 Ninth International Conference on Intelligent
Control and Information Processing (ICICIP). IEEE.
Wang, W., Zhu, M., Zeng, X., Ye, X., and Sheng, Y.
(2017). Malware traffic classification using convolu-
tional neural network for representation learning. In
2017 International Conference on Information Net-
working (ICOIN). IEEE.
Xilinx (2023). Vitis AI. [online] Available:
https://www.xilinx.com/products/design-
tools/vitis/vitis-ai.html.
Yang, K., Kpotufe, S., and Feamster, N. (2021). An efficient
one-class svm for anomaly detection in the internet of
things. ArXiv, abs/2104.11146.
Yang, Y., Zheng, K., Wu, C., and Yang, Y. (2019). Improv-
ing the classification effectiveness of intrusion detec-
tion by using improved conditional variational autoen-
coder and deep neural network. Sensors, 19(11):2528.
Yin, C., Zhu, Y., Fei, J., and He, X. (2017). A deep learning
approach for intrusion detection using recurrent neural
networks. IEEE Access, 5:21954–21961.
Zheng, Z., Cai, Y., and Li, Y. (2015). Oversampling method
for imbalanced classification. Comput. Informatics,
34:1017–1037.
High Throughput Neural Network for Network Intrusion Detection on FPGAs: An Algorithm-Architecture Interaction
429