
Table 2: Single motifs datasets evaluation using F
measure
and IoU = 0.75. In all 3 tables, bold indicates optimal performance
without Sequitur; underlined shows improvements with Sequitur (bold if surpassing all methods); dashed underlined values
indicate Sequitur-related decreases.
Dataset SAX
uniform
SAX
1d-
SAX
fABBA
SAX
Sequitur
uniform
SAX
Sequitur
1d-
SAX
Sequitur
fABBA
Sequitur
CBF 0,95 0,95 0,95 0,53 0,95 0,89 0,95 0,63
ECG200 1,00 1,00 1,00 0,67 1,00 1,00 1,00 0,75
ECG5000 0,95 0,95 0,90 1,00 0,95 0,95 0,90 0,95
ECGFiveDays 1,00 1,00 1,00 0,18 1,00 1,00 1,00 0,67
ElectricDevices 0,82 0,75 0,82 0,82 0,89 0,84 0,89 0,78
ItalyPowerDemand 0,95 1,00 1,00 0,57 1,00 0,95 0,90 0,63
MoteStrain 0,89 0,95 0,95 0,37 0,89 0,95 0,89 0,67
Plane 1,00 1,00 1,00 0,75 1,00 1,00 1,00 0,95
SonyAIBORobotS1 0,84 0,90 0,90 0,18 0,90 0,90 0,90 0,57
SonyAIBORobotS2 0,80 0,74 0,76 0,18 0,60 0,57 0,63 0,53
SyntheticControl 0,53 0,57 0,56 0,18 0,50 0,58 0,63 0,46
TwoLeadECG 1,00 1,00 1,00 0,46 1,00 1,00 1,00 0,95
TwoPatterns 0,71 0,67 0,74 0,57 0,62 0,67 0,71 0,53
BME 0,75 0,75 0,75 0,95 0,75 0,75 0,75 0,89
Chinatown 1,00 0,89 1,00 0,00 0,95 0,90 0,90 0,67
MelbournePedestrian 1,00 1,00 1,00 0,00 1,00 0,75 1,00 0,59
PowerCons 0,82 0,82 0,82 0,75 0,70 0,82 0,82 0,67
SmoothSubspace 0,71 0,64 0,67 0,71 0,47 0,67 0,50 0,71
Sequitur does not enhance the results in the dis-
covery of a single motif for SAX, 1d-SAX, and Uni-
fomSAX based discovery methods. When dealing
with a single motif where all instances have the same
size, representation-only methods are sufficient to
capture them. Sequitur introduces complexity by at-
tempting to extract hierarchical structures. In the ma-
jority of cases, Sequitur enhances the results com-
pared to fABBA alone. fABBA is used for classifi-
cation, so it is used for segmenting smaller signals
without noise. However, the optimization of fABBA
with Sequitur allows for the exploration of parameters
enabling the clustering of subsequences that Sequitur
can assemble to form motifs.
5.2 Multi-Class Motif Discovery
This section presents experiments on more complex
datasets, the datasets contain motifs in two classes.
We evaluate the ability of the algorithms to identify
and differentiate between the two motifs using the
mean F-measure. Results are shown in table 3.
As fABBA’s results were consistently inferior to
the other methods for the simple datasets, and were
worse in our preliminary tests on the multi motif
datasets, we focused our experiments on the SAX and
its derived methods.
The findings from the single motif discovery pro-
cess are generalized to multiple motifs discovery.
In other words, no single method is optimal for all
datasets; rather, the choice of a representation method
Table 3: Multiple motifs UCR datasets evaluation using F-
measure and IoU = 0.75.
Dataset SAX
Uniform
SAX
1d-
SAX
SAX
Sequitur
Uniform
SAX
Sequitur
1d-
SAX
Sequitur
CBF2 0,88 0, 90 0,88 0,88 0,88 0,88
ECG5000-2 0,94 0, 94 0,94 0,89 0,95 0,90
ECGFiveDays2 1,00 1, 00 1,00 1,00 1,00 1,00
ElectricDevices2 0,75 0,71 0,82 0,82 0,66 0,78
ItalyPowerDem2 0,57 0, 88 0,88 0,82 0,79 0,75
MoteStrain2 0,82 0, 82 0,82 0,82 0,82 0, 84
Plane2 1,00 1, 00 1,00 1,00 1,00 1,00
SonyAIBORS12 0,82 0,89 0,84 0,82 0,79 0,84
SonyAIBORS22 0,82 0,83 0,82 0,75 0,75 0,82
SyntheticControl2 0,63 0,65 0, 73 0,63 0,57 0,57
TwoLeadECG2 0,89 0,94 0, 94 0,95 1,00 0,94
TwoPatterns2 0, 78 0,71 0,78 0,66 0,68 0,67
BME2 0,79 0,83 0,88 0,82 0,79 0,88
Chinatown2 0,94 0,78 0,94 0,89 0,69 0,88
MelbourneP2 0,94 0,88 0,94 0, 95 0,82 0,88
PowerCons2 0,63 0,66 0,75 0,66 0,60 0,67
SmoothSubspace2 0,57 0,62 0, 63 0, 70 0,62 0,55
depends on the characteristics of motifs and datasets.
If motifs are of fixed length, relatively simple or
do not have hierarchical structures, representation-
only based methods, which focus on capturing mo-
tifs through symbolization, are sufficient and might
be more efficient. Sequitur’s strength lies in capturing
hierarchical structures, which may be more advanta-
geous for complex motifs.
To confirm this, we created synthetic datasets
with controlled motif characteristics and evaluate the
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
316