
ing Image and Event Modalities. arXiv preprint
arXiv:2211.10754.
Bolten, T., Lentzen, F., Pohle-Fröhlich, R., and Tönnies, K.
(2022). Evaluation of Deep Learning based 3D-Point-
Cloud Processing Techniques for Semantic Segmen-
tation of Neuromorphic Vision Sensor Event-streams.
In Proceedings of the 17th International Joint Con-
ference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 4: VIS-
APP, pages 168–179. INSTICC, SciTePress.
Bolten, T., Neumann, C., Pohle-Fröhlich, R., and Tön-
nies, K. (2023a). N-MuPeTS: Event Camera Dataset
for Multi-Person Tracking and Instance Segmentation.
In Proceedings of the 18th International Joint Con-
ference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 4: VIS-
APP, pages 290–300. INSTICC, SciTePress.
Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021).
DVS-OUTLAB: A Neuromorphic Event-Based Long
Time Monitoring Dataset for Real-World Outdoor
Scenarios. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops
(CVPRW), pages 1348–1357. IEEE.
Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023b).
Semantic Segmentation on Neuromorphic Vision Sen-
sor Event-Streams Using PointNet++ and UNet Based
Processing Approaches. In Proceedings of the 18th
International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applica-
tions - Volume 4: VISAPP, pages 168–178. INSTICC,
SciTePress.
Chen, G., Cao, H., Ye, C., Zhang, Z., Liu, X., Mo, X., Qu,
Z., Conradt, J., Röhrbein, F., and Knoll, A. (2019).
Multi-Cue Event Information Fusion for Pedestrian
Detection With Neuromorphic Vision Sensors. Fron-
tiers in Neurorobotics, 13:10.
Chen, S., Fang, J., Zhang, Q., Liu, W., and Wang, X. (2021).
Hierarchical Aggregation for 3D Instance Segmenta-
tion. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 15467–15476. IEEE.
Detlefsen, N. S., Borovec, J., Schock, J., Jha, A. H., Koker,
T., Liello, L. D., Stancl, D., Quan, C., Grechkin,
M., and Falcon, W. (2022). TorchMetrics - Mea-
suring Reproducibility in PyTorch. Journal of Open
Source Software, 7(70):4101. https://github.com/
Lightning-AI/torchmetrics.
Engelmann, F., Bokeloh, M., Fathi, A., Leibe, B., and
Niessner, M. (2020). 3D-MPA: Multi-Proposal Ag-
gregation for 3D Semantic Instance Segmentation.
In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9028–9037.
IEEE.
Graham, B., Engelcke, M., and van der Maaten, L. (2018).
3D Semantic Segmentation With Submanifold Sparse
Convolutional Networks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 9224–9232. IEEE.
Guo, M., Huang, J., and Chen, S. (2017). Live Demonstra-
tion: A 768 × 640 pixels 200Meps Dynamic Vision
Sensor. In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–1.
He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).
Mask R-CNN. In 2017 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 2980–
2988. IEEE. https://github.com/matterport/Mask_
RCNN.
Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.-W., and Jia,
J. (2020). PointGroup: Dual-Set Point Grouping for
3D Instance Segmentation. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). IEEE.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by
Ultralytics. https://github.com/ultralytics/ultralytics,
v8.0.0, AGPL-3.0.
Kachole, S., Alkendi, Y., Baghaei Naeini, F., Makris,
D., and Zweiri, Y. (2023a). Asynchronous Events-
based Panoptic Segmentation using Graph Mixer Neu-
ral Network. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 4083–4092. IEEE.
Kachole, S., Huang, X., Baghaei Naeini, F., Muthusamy,
R., Makris, D., and Zweiri, Y. (2023b). Bimodal
SegNet: Instance Segmentation Fusing Events and
RGB Frames for Robotic Grasping. arXiv preprint
arXiv:2303.11228.
Mitrokhin, A., Fermüller, C., Parameshwara, C., and Aloi-
monos, Y. (2018). Event-Based Moving Object De-
tection and Tracking. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 6895–6902.
Mitrokhin, A., Hua, Z., Fermüller, C., and Aloimonos, Y.
(2020). Learning Visual Motion Segmentation Us-
ing Event Surfaces. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 14402–14411. IEEE.
Müllner, D. (2013). fastcluster: Fast Hierarchical, Agglom-
erative Clustering Routines for R and Python. Journal
of Statistical Software, 53(9):1–18.
Pi ˛atkowska, E., Belbachir, A. N., Schraml, S., and Gelautz,
M. (2012). Spatiotemporal Multiple Persons Track-
ing using Dynamic Vision Sensor. In 2012 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pages 35–40. IEEE.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
Net++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space. In Advances in Neural In-
formation Processing Systems, NIPS’17, pages 5105–
5114, Red Hook, NY, USA. Curran Associates Inc.
https://github.com/charlesq34/pointnet2.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You Only Look Once: Unified, Real-Time
Object Detection. In 2016 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 779–788. IEEE.
Rodríguez-Gomez, J. P., Eguíluz, A. G., Martínez-de Dios,
J. R., and Ollero, A. (2020). Asynchronous Event-
Based Clustering and Tracking for Intrusion Moni-
toring in UAS. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
8518–8524.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
462