
fication from version control system logs. In EDOC
Workshops, pages 1–10. IEEE Computer Society.
Agrawal, M. and Chari, K. (2007). Software effort, quality,
and cycle time: A study of CMM level 5 projects. IEEE
Trans. Software Eng., 33(3):145–156.
Bala, S., Cabanillas, C., Mendling, J., Rogge-Solti, A., and
Polleres, A. (2015). Mining project-oriented business
processes. In BPM, volume 9253 of LNCS, pages 425–
440. Springer.
Bala, S., Mendling, J., Schimak, M., and Queteschiner, P.
(2018). Case and activity identification for mining pro-
cess models from middleware. In PoEM, volume 335
of Lecture Notes in Business Information Processing,
pages 86–102. Springer.
Bala, S., Revoredo, K., de A. R. Gon
c¸
alves, J. C., Bai
˜
ao,
F. A., Mendling, J., and Santoro, F. M. (2017). Uncov-
ering the hidden co-evolution in the work history of
software projects. In BPM, volume 10445 of LNCS,
pages 164–180. Springer.
Basili, V. R., Caldiera, G., and Rombach, H. D. (1994).
The goal question metric approach. Encyclopedia of
software engineering, pages 528–532.
Beheshti, S., Benatallah, B., and Motahari Nezhad, H. R.
(2013). Enabling the analysis of cross-cutting aspects
in ad-hoc processes. In CAiSE, volume 7908 of LNCS,
pages 51–67. Springer.
Benbunan-Fich, R., Adler, R. F., and Mavlanova, T.
(2011). Measuring multitasking behavior with activity-
based metrics. ACM Trans. Comput. Hum. Interact.,
18(2):7:1–7:22.
Biazzini, M. and Baudry, B. (2014). ”may the fork be with
you”: novel metrics to analyze collaboration on github.
In WETSoM, pages 37–43. ACM.
Esser, S. and Fahland, D. (2021). Multi-dimensional event
data in graph databases. J. Data Semant., 10(1-2):109–
141.
Fahland, D. (2022). Multi-dimensional process analysis. In
BPM, volume 13420 of Lecture Notes in Computer
Science, pages 27–33. Springer.
Ghahfarokhi, A. F., Park, G., Berti, A., and van der Aalst,
W. M. P. (2021). OCEL: A standard for object-centric
event logs. In ADBIS (Short Papers), volume 1450
of Communications in Computer and Information Sci-
ence, pages 169–175. Springer.
Jooken, L., Creemers, M., and Jans, M. (2019). Extracting a
collaboration model from VCS logs based on process
mining techniques. In Business Process Management
Workshops, volume 362 of Lecture Notes in Business
Information Processing, pages 212–223. Springer.
Keil, M. (1995). Pulling the plug: Software project manage-
ment and the problem of project escalation. MIS Q.,
19(4):421–447.
Khayatbashi, S., Hartig, O., and Jalali, A. (2023). Transform-
ing event knowledge graph to object-centric event logs:
A comparative study for multi-dimensional process
analysis. In ER.
Kindler, E., Rubin, V. A., and Sch
¨
afer, W. (2006). Activity
mining for discovering software process models. In
Software Engineering, volume P-79 of LNI, pages 175–
180. GI.
Marques, R., da Silva, M. M., and Ferreira, D. R. (2018).
Assessing agile software development processes with
process mining: A case study. In CBI (1), pages 109–
118. IEEE Computer Society.
Meneely, A., Corcoran, M., and Williams, L. A. (2010). Im-
proving developer activity metrics with issue tracking
annotations. In WETSoM, pages 75–80. ACM.
Munson, J. C. and Elbaum, S. G. (1998). Code churn: A
measure for estimating the impact of code change. In
ICSM, page 24. IEEE Computer Society.
Oliva, G. A., Santana, F. W., Gerosa, M. A., and de Souza,
C. R. B. (2011). Towards a classification of logical
dependencies origins: a case study. In EVOL/IWPSE,
pages 31–40. ACM.
Paasivaara, M. and Lassenius, C. (2003). Collaboration
practices in global inter-organizational software de-
velopment projects. Softw. Process. Improv. Pract.,
8(4):183–199.
Poncin, W., Serebrenik, A., and van den Brand, M. (2011).
Process mining software repositories. In CSMR, pages
5–14. IEEE Computer Society.
Rastogi, A., Gupta, A., and Sureka, A. (2013). Samiksha:
mining issue tracking system for contribution and per-
formance assessment. In ISEC, pages 13–22. ACM.
Shin, Y., Meneely, A., Williams, L. A., and Osborne, J. A.
(2011). Evaluating complexity, code churn, and devel-
oper activity metrics as indicators of software vulnera-
bilities. IEEE Trans. Software Eng., 37(6):772–787.
Tsoury, A., Soffer, P., and Reinhartz-Berger, I. (2018). A
conceptual framework for supporting deep exploration
of business process behavior. In ER, volume 11157 of
LNCS, pages 58–71. Springer.
van der Aalst, W. M. P. (2016). Process Mining - Data
Science in Action, Second Edition. Springer.
van der Aalst, W. M. P. (2019). Object-centric process min-
ing: Dealing with divergence and convergence in event
data. In SEFM, volume 11724 of Lecture Notes in
Computer Science, pages 3–25. Springer.
van der Aalst, W. M. P., Barthelmess, P., Ellis, C. A.,
and Wainer, J. (2001). Proclets: A framework for
lightweight interacting workflow processes. Int. J. Co-
operative Inf. Syst., 10(4):443–481.
Vasilescu, B., Serebrenik, A., Goeminne, M., and Mens, T.
(2014). On the variation and specialisation of workload
- A case study of the gnome ecosystem community.
Empir. Softw. Eng., 19(4):955–1008.
Vavpotic, D., Bala, S., Mendling, J., and Hovelja, T. (2022).
Software process evaluation from user perceptions and
log data. J. Softw. Evol. Process., 34(4).
Wieringa, R. J. (2014). Design Science Methodology
for Information Systems and Software Engineering.
Springer.
Zimmermann, T. and Weißgerber, P. (2004). Preprocessing
CVS data for fine-grained analysis. In MSR, pages 2–6.
Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A.
(2005). Mining version histories to guide software
changes. IEEE Trans. Software Eng., 31(6):429–445.
MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering
186