
CWRU-Dataset. (2023). Cwru bearing data center, case
western reserve university. https://engineering.case.
edu/bearingdatacenter/. Accessed: 24 October 2023.
Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural
architecture search: A survey.
Faouzi, J. et al. (2017). Markovtransitionfield.
c
2017-2021, Johann Faouzi and all pyts con-
tributors. Available at: https://pyts.readthedocs.
io/en/stable/ modules/pyts/image/mtf.html#
MarkovTransitionField (Accessed: 30 July 2023).
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.
Hoang, D.-T. and Kang, H.-J. (2019). Rolling element bear-
ing fault diagnosis using convolutional neural network
and vibration image. Cognitive Systems Research,
53:42–50.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Houreh, Y., Mahdinejad, M., Naredo, E., Dias, D. M., and
Ryan, C. (2021). Hnas: Hyper neural architecture
search for image segmentation. In ICAART (2), pages
246–256.
ISO (2015). Bearing damage and failure analy-
sis, p.8. https://www.iso.org/obp/ui/en/#iso:std:iso:
15242:-1:ed-2:v1:en. Accessed: 24 October 2023.
Laredo, D., Qin, Y., Sch
¨
utze, O., and Sun, J.-Q. (2019).
Automatic model selection for neural networks.
Li, H. and Ji (2019). Bearing fault diagnosis with a fea-
ture fusion method based on an ensemble convolu-
tional neural network and deep neural network. Sen-
sors, 19:2034.
Li, S., Liu, G., Tang, X., Lu, J., and Hu, J. (2017). An en-
semble deep convolutional neural network model with
improved ds evidence fusion for bearing fault diagno-
sis. Sensors, 17(8):1729.
Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2022).
A survey of convolutional neural networks: Anal-
ysis, applications, and prospects. IEEE Transac-
tions on Neural Networks and Learning Systems,
33(12):6999–7019.
Liu, J. et al. (2021). Fault prediction of bearings
based on lstm and statistical process analysis. Re-
liability Engineering & System Safety. Available
at: https://www.sciencedirect.com/science/article/pii/
S0951832021001873 (Accessed: 01 June 2023).
Liu, R., Yang, B., Zio, E., and Chen, X. (2018). Artificial
intelligence for fault diagnosis of rotating machinery:
A review. Mechanical Systems and Signal Processing,
108:33–47.
Montana, D. J. and Davis, L. (1989). Training feedforward
neural networks using genetic algorithms. In Pro-
ceedings of the 11th International Joint Conference
on Artificial Intelligence - Volume 1, IJCAI’89, page
762–767, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.
Peng, B., Wan, S., Bi, Y., Xue, B., and Zhang, M.
(2020). Automatic feature extraction and construc-
tion using genetic programming for rotating machin-
ery fault diagnosis. IEEE transactions on cybernetics,
51(10):4909–4923.
Pham, M., Kim, J.-M., and Kim, C. (2020). Accurate bear-
ing fault diagnosis under variable shaft speed using
convolutional neural networks and vibration spectro-
gram. Applied Sciences, 10:6385.
Pinedo-Sanchez, L. A., Mercado-Ravell, D. A., and
Carballo-Monsivais, C. A. (2020). Vibration analysis
in bearings for failure prevention using cnn. Journal
of the Brazilian Society of Mechanical Sciences and
Engineering, 42(12):628.
Romanssini, M., de Aguirre, P. C. C., Compassi-Severo, L.,
and Girardi, A. G. (2023). A review on vibration mon-
itoring techniques for predictive maintenance of rotat-
ing machinery. Eng, 4(3):1797–1817.
Sakib, N. and Wuest, T. (2018). Challenges and opportuni-
ties of condition-based predictive maintenance: a re-
view. Procedia cirp, 78:267–272.
Scanlan, T. (2023). Deep convolutional neural network on
cifar-10 dataset. Lecture slides in Deep Learning for
Image Classification. Machine Vision Module.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
SKF-Group. (2017). Bearing damage and failure analysis,
p.8. https://www.skf.com/binaries/pub12/Images/
0901d1968064c148-Bearing-failures---14219\
2-EN\ tcm\ 12-297619.pdf. Accessed: 30 Septem-
ber 2022.
SKF-Group. (2023). Bearing rating life. https:
//www.skf.com/sg/products/rolling-bearings/
principles-of-rolling-bearing-selection/
bearing-selection-process/bearing-size/
size-selection-based-on-rating-life/
bearing-rating-life. Accessed: 24 October 2023.
Wang, H., Sun, W., He, L., and Zhou, J. (2022a). Rolling
bearing fault diagnosis using multi-sensor data fusion
based on 1d-cnn model. Entropy, 24(5):573.
Wang, M., Wang, W., Zhang, X., and Iu, H. H.-C. (2022b).
A new fault diagnosis of rolling bearing based on
markov transition field and cnn. Entropy, 24(6):751.
Xia, M., Li, T., Xu, L., Liu, L., and De Silva, C. W.
(2017). Fault diagnosis for rotating machinery us-
ing multiple sensors and convolutional neural net-
works. IEEE/ASME transactions on mechatronics,
23(1):101–110.
Yan, J., Kan, J., and Luo, H. (2022). Rolling bearing fault
diagnosis based on markov transition field and resid-
ual network. Sensors, 22(10):3936.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
300