
recognition embeddings. Infocommunications Jour-
nal, 12(2):50–56.
Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., and Yosinski,
J. (2018). Faster neural networks straight from jpeg.
Advances in Neural Information Processing Systems,
31.
Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). Ms-
celeb-1m: A dataset and benchmark for large-scale
face recognition. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part III 14,
pages 87–102. Springer.
Hahn, V. K. and Marcel, S. (2022). Towards protecting
face embeddings in mobile face verification scenar-
ios. IEEE Transactions on Biometrics, Behavior, and
Identity Science, 4(1):117–134.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Huang, G. B., Mattar, M., Berg, T., and Learned-Miller,
E. (2008). Labeled faces in the wild: A database
forstudying face recognition in unconstrained envi-
ronments. In Workshop on faces in’Real-Life’Images:
detection, alignment, and recognition.
Ji, J., Wang, H., Huang, Y., Wu, J., Xu, X., Ding, S., Zhang,
S., Cao, L., and Ji, R. (2022). Privacy-preserving
face recognition with learnable privacy budgets in fre-
quency domain. In European Conference on Com-
puter Vision, pages 475–491. Springer.
Knott, B., Venkataraman, S., Hannun, A., Sengupta, S.,
Ibrahim, M., and van der Maaten, L. (2021). Crypten:
Secure multi-party computation meets machine learn-
ing. Advances in Neural Information Processing Sys-
tems, 34:4961–4973.
Korshunov, P. and Ebrahimi, T. (2013). Using warping for
privacy protection in video surveillance. In 2013 18th
International Conference on Digital Signal Process-
ing (DSP), pages 1–6. IEEE.
Kumar Pandey, R., Zhou, Y., Urala Kota, B., and Govin-
daraju, V. (2016). Deep secure encoding for face tem-
plate protection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition
workshops, pages 9–15.
Lo, S.-Y. and Hang, H.-M. (2019). Exploring semantic seg-
mentation on the dct representation. In Proceedings of
the ACM Multimedia Asia, pages 1–6.
Ma, Y., Wu, L., Gu, X., He, J., and Yang, Z. (2017). A se-
cure face-verification scheme based on homomorphic
encryption and deep neural networks. IEEE Access,
5:16532–16538.
McNeely-White, D., Sattelberg, B., Blanchard, N., and
Beveridge, R. (2022). Canonical face embeddings.
IEEE Transactions on Biometrics, Behavior, and Iden-
tity Science, 4(2):197–209.
Mi, Y., Huang, Y., Ji, J., Zhao, M., Wu, J., Xu, X., Ding, S.,
and Zhou, S. (2023). Privacy-preserving face recog-
nition using random frequency components. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 19673–19684.
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J.,
Kotsia, I., and Zafeiriou, S. (2017). Agedb: the first
manually collected, in-the-wild age database. In pro-
ceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 51–59.
Ojala, T., Pietik
¨
ainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on featured distributions. Pattern recognition,
29(1):51–59.
Pandey, R. K. and Govindaraju, V. (2015). Secure face tem-
plate generation via local region hashing. In 2015
international conference on biometrics (ICB), pages
299–304. IEEE.
Sengupta, S., Chen, J.-C., Castillo, C., Patel, V. M., Chel-
lappa, R., and Jacobs, D. W. (2016). Frontal to profile
face verification in the wild. In 2016 IEEE winter con-
ference on applications of computer vision (WACV),
pages 1–9. IEEE.
Ulicny, M. and Dahyot, R. (2017). On using cnn with dct
based image data.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. journal of machine learning research 9.
Nov (2008).
Wallace, G. K. (1991). The jpeg still picture compression
standard. Communications of the ACM, 34(4):30–44.
Wang, Y., Liu, J., Luo, M., Yang, L., and Wang, L. (2022).
Privacy-preserving face recognition in the frequency
domain. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 2558–2566.
Xiao, B., Geng, T., Bi, X., and Li, W. (2020). Color-
related local binary pattern: A learned local de-
scriptor for color image recognition. arXiv preprint
arXiv:2012.06132.
Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.-K., and Ren,
F. (2020). Learning in the frequency domain. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 1740–1749.
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE signal processing let-
ters, 23(10):1499–1503.
Zheng, T. and Deng, W. (2018). Cross-pose lfw: A database
for studying cross-pose face recognition in uncon-
strained environments. Beijing University of Posts and
Telecommunications, Tech. Rep, 5(7).
Zheng, T., Deng, W., and Hu, J. (2017). Cross-age
lfw: A database for studying cross-age face recogni-
tion in unconstrained environments. arXiv preprint
arXiv:1708.08197.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
546