
Beck, T. W., DeFreitas, J. M., and Stock, M. S. (2012). Ac-
curacy of three different techniques for automatically
estimating innervation zone location. Computer meth-
ods and programs in biomedicine, 105(1):13–21.
Farina, D., Fortunato, E., and Merletti, R. (2000). Non-
invasive estimation of motor unit conduction velocity
distribution using linear electrode arrays. IEEE Trans-
actions on Biomedical Engineering, 47(3):380–388.
Fuglevand, A. J., Winter, D. A., and Patla, A. E. (1993).
Models of recruitment and rate coding organization
in motor-unit pools. Journal of neurophysiology,
70(6):2470–2488.
Guzm
´
an, R. A., Silvestre, R. A., Arriagada, D. A.,
GUZM
´
AN, R., SILVESTRE, R., and ARRIAGADA,
D. (2011). Biceps brachii muscle innervation zone lo-
cation in healthy subjects using high-density surface
electromyography. int J Morphol, 29(2):347–52.
Huang, C., Chen, M., Zhang, Y., Li, S., Klein, C. S., and
Zhou, P. (2023). A novel muscle innervation zone esti-
mation method using monopolar high density surface
electromyography. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 31:22–30.
Marateb, H. R., Farahi, M., Rojas, M., Ma
˜
nanas, M. A.,
and Farina, D. (2016). Detection of multiple innerva-
tion zones from multi-channel surface emg recordings
with low signal-to-noise ratio using graph-cut seg-
mentation. PLoS One, 11(12):e0167954.
Martin, S. and MacIsaac, D. (2006). Innervation zone
shift with changes in joint angle in the brachial bi-
ceps. Journal of Electromyography and Kinesiology,
16(2):144–148.
Mechtenberg, M. (2023a). UAS-Embedded-Systems-
Biomechatronics/EMG-concentrated-current-
sources: v0.2.2.
Mechtenberg, M. (2023b). UAS-Embedded-Systems-
Biomechatronics/sEMG-innervation-zone-
estimation.
Mechtenberg, M. and Schneider, A. (2023). A method for
the estimation of a motor unit innervation zone center
position evaluated with a computational semg model.
Frontiers in Neurorobotics, 17.
Mesin, L., Gazzoni, M., and Merletti, R. (2009). Automatic
localisation of innervation zones: a simulation study
of the external anal sphincter. Journal of Electromyo-
graphy and Kinesiology, 19(6):e413–e421.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Petersen, E. and Rostalski, P. (2019). A comprehen-
sive mathematical model of motor unit pool organiza-
tion, surface electromyography, and force generation.
Frontiers in physiology, 10:176.
Piitulainen, H., Rantalainen, T., Linnamo, V., Komi, P., and
Avela, J. (2009). Innervation zone shift at different
levels of isometric contraction in the biceps brachii
muscle. Journal of electromyography and kinesiology,
19(4):667–675.
Zhang, C., Peng, Y., Li, S., Zhou, P., Munoz, A., Tang,
D., and Zhang, Y. (2016). Spatial characterization of
innervation zones under electrically elicited m-wave.
In 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society
(EMBC), pages 121–124. IEEE.
APPENDIX
Table 1: List of constant parameters for the EMG simula-
tion experiments.
Parameter Value Reference
electrode y 0cm estimated
electrode z 2cm estimated
W
I
1cm estimated
W
T L
0.5cm estimated
W
T R
0.5cm estimated
R
q
10cm
2
π
estimated
P
IZ,y
0cm estimated
P
IZ,z
0cm estimated
N
MU
774 (Mechtenberg and
Schneider, 2023)
C
1
20 (Petersen and Rostalski,
2019)
C
2
1.5 (Petersen and Rostalski,
2019)
C
3
30 (Petersen and Rostalski,
2019)
C
4
13 (Petersen and Rostalski,
2019)
C
5
8 (Petersen and Rostalski,
2019)
C
6
8 (Petersen and Rostalski,
2019)
C
7
0.05 (Petersen and Rostalski,
2019)
BIOSIGNALS 2024 - 17th International Conference on Bio-inspired Systems and Signal Processing
636