laser pulse from the focal plasma with supercritical
electron concentration. The obtained results allow us
to identify the specific laser focusing conditions
necessary for this regime of material nanostructuring.
Notably, the research has revealed that the formation
of contrast plasma lattices requires a tightly focused
laser conditions. These findings represent a crucial
step in comprehending the intricate mechanisms
involved in modifying solids and the underlying
physical processes. It brings us closer to the
development of an advanced theoretical model that
will enhance our ability to precisely control
microscale laser modifications in solid dielectric
materials.
ACKNOWLEDGEMENTS
This research was funded by the Russian Science
Foundation (project no. 22-72-10076).
REFERENCES
Gattass, R., Mazur, E. (2008). Nature Photon, 2, 219–225.
Taylor, R. S., Hnatovsky, C., Simova, E., Pattathilet, R.
(2007). Optics Letters, 32 (19), 2888-2890.
Bulgakova, N. M.; Zhukov, V. P.; Sonina, S. V.;
Meshcheryakov, Y.P. (2015). J. Appl. Phys., 118 (23),
233108.
Shimotsuma, Y.; Hirao, K.; Qiu, J. R.; Kazansky, P. G.
(2005). Modern Phys. Lett. B, 19, 225.
Sun, H.Y.; Song, J.; Li, C.B.; Xu, J.; Wang, X. S.; Cheng,
Y.; Xu, Z. Z.; Qiu, J. R.; Jia, T. (2007). Appl. Phys. A,
88, 285.
Beresna, M.; Gecevičius, M.; Bulgakova, N. M.; Kazansky,
P. G. (2011). Opt. Express, 19, 18989.
Dai, Y.; Patel, A.; Song, J.; Beresna, M.; and Kazansky, P.
G. (2016). Opt. Express, 24, 19344
Mizeikis, V.; Juodkazis, S.; Balciunas, T.; Misawa, H.;
Kudryashov, S.I.; Ionin, A.A.; Zvorykin, V.D. (2009).
J. Appl. Phys., 105, 123106.
Schaffer, C. B.; Brodeur, A.; García, J. F.; Mazur, E.
(2001). Opt. Lett., 26, 93.
Wang, Z.; Sugioka, K.; Hanada, Y.; Midorikawa, K.
(2007). Appl. Phys. A, 88, 699.
Mermillod-Blondin, A.; Burakov, I. M.; Meshcheryakov,
Y. P.; Bulgakova, N. M.; Audouard, E.; Rosenfeld, A.;
Husakou, A.; Hertel, I. V.; Stoian, R. (2008). Phys. Rev.
B, 77, 104205
Shimotsuma, Y.; Kazansky, P. G.; Qiu, J. R.; Hirao, K.
(2003). Phys. Rev. Lett., 91, 247405.
Desmarchelier, R.; Poumellec, B.; Brisset, F.; Mazerat, S.
and Lancry, M. (2015). World Journal of Nano Science
and Engineering, 5, 115-125.
Bulgakova, N. M.; Zhukov, V. P.; Meshcheryakov, Yu. P.
(2013). Appl. Phys. B, 113(3), 437-449.
Bhardwaj, V. R.; Simova, E.; Rajeev, P. P.; Hnatovsky, C.;
Taylor, R. S.; Rayner, D. M.; Corkum, P.B. (2006).
Phys. Rev. Lett., 96, 057404.
Taylor, R.; Hnatovsky, C.; Simova, E. (2008). Laser
Photonics Rev., 2, 26.
Beresna, M.; Gecevičius, M.; Kazansky, P. G.; Taylor, T.;
Kavokin, A. (2012). A. Appl. Phys. Lett., 101, 053120.
Kudryashov, S. I.; Danilov, P. A.; Smaev, M. P.; Rupasov,
A. E.; Zolot’ko, A. S.; Ionin A. A.; Zakoldaev, R. A.
(2021). JETP Lett., 113, 493-497.
Kudryashov, S.; Rupasov, A.; Kosobokov, M.;
Akhmatkhanov, A.; Krasin, G.; Danilov, P.; Lisjikh, B.;
Abramov, A.; Greshnyakov, E.; Kuzmin, E.; et al.
(2022). Nanomaterials, 12, 4303.
Kudryashov, S.; Rupasov, A.; Smayev, M.; Danilov, P.;
Kuzmin, E.; Mushkarina, I.; Gorevoy, A.; Bogatskaya,
A.; and Zolot’ko, A. (2023) Nanomaterials, 13(6),
1133.
Audebert, P.; Daguzan, Ph.; Dos Santos, A.; Gauthier, J. C.;
Geindre, J. P.; Guizard, S.; Hamoniaux, G.; Krastev, K.;
Martin, P.; Petite, G.; and Antonetti, A. (1994). Phys.
Rev. Lett., 73 (14), 1990.
Bogatskaya, A.; Gulina, Yu.; Smirnov, N.; Gritsenko, I.;
Kudryashov, S.; and Popov, A. (2023). Photonics, 10,
515.