REFERENCES
Abou Baker, N., Zengeler, N., & Handmann, U. (2022). A
Transfer Learning Evaluation of Deep Neural Networks
for Image Classification. In Machine Learning and
Knowledge Extraction (Vol. 4, Issue 1,pp. 22–41).
https://doi.org/10.3390/make4010002
Aksoy, M. Ç., Sirmacek, B., & Ünsalan, C. (2023). Land
classification in satellite images by injecting traditional
features to CNN models. Remote Sensing Letters,
14(2), 157–167. https://doi.org/10.1080/2150704X.
2023.2167057
Chen, S., & Tian, Y. (2015). Pyramid of Spatial Relatons
for Scene-Level Land Use Classification. IEEE
Transactions on Geoscience and Remote Sensing,
53(4), 1947–1957. https://doi.org/10.1109/TGRS.
2014.2351395
Cheng, G, Xie, X., Han, J., Guo, L., & Xia, G.-S. (2020).
Remote Sensing Image Scene Classification Meets
Deep Learning: Challenges, Methods, Benchmarks,
and Opportunities. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 13,
3735–3756. https://doi.org/10.1109/JSTARS.2020.
3005403
Cheng, Gong, Xie, X., Han, J., Guo, L., & Xia, G. S. (2019).
Remote Sensing Image Scene Classification Meets
Deep Learning: Challenges, Methods, Benchmarks,
and Opportunities. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing,
13(X), 37353756. https://doi.org/10.1109/JSTARS.
2020.3005403
Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek, M.
(2012). A brief introduction to OpenCV. 2012
Proceedings of the 35th International Convention
MIPRO, 1725–1730.
Dewangkoro, H. I., & Arymurthy, A. M. (2021). Land use
and land cover classification using CNN, SVM, and
Channel Squeeze & Spatial Excitation block. IOP
Conference Series: Earth and Environmental Science,
704(1). https://doi.org/10.1088/1755-1315/704/1/012
048
Helber, P, Bischke, B., Dengel, A., & Borth, D. (2018).
Introducing Eurosat: A Novel Dataset and Deep
Learning Benchmark for Land Use and Land Cover
Classification. IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium, 204–207.
https://doi.org/10.1109/IGARSS.2018.8519248
Helber, Patrick, Bischke, B., Dengel, A., & Borth, D.
(2019). Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 12(7), 2217–2226.
https://doi.org/10.1109/JSTARS.2019.2918242
Hu, F., Xia, G.-S., Wang, Z., Zhang, L., & Sun, H. (2014).
Unsupervised feature coding on local patch manifold
for satellite image scene classification. 2014 IEEE
Geoscience and Remote Sensing Symposium, 1273–
1276. https://doi.org/10.1109/IGARSS.2014.6946665
Janga, B., Asamani, G. P., Sun, Z., & Cristea, N. (2023). A
Review of Practical AI for Remote Sensing in Earth
Sciences. In Remote Sensing (Vol. 15, Issue 16).
https://doi.org/10.3390/rs15164112
Lee, H., & Song, J. (2019). Introduction to convolutional
neural network using Keras; an understanding from a
statistician. Communications for Statistical
Applications and Methods, 26(6), 591–610.
Temenos, A., Temenos, N., Kaselimi, M., Doulamis, A., &
Doulamis, N. (2023). Interpretable Deep Learning
Framework for Land Use and Land Cover
Classification in Remote Sensing Using SHAP. IEEE
Geoscience and Remote Sensing Letters, 20, 1–5.
https://doi.org/10.1109/LGRS.2023.3251652
Thakur, R., & Panse, P. (2022). Classification Performance
of Land Use from Multispectral Remote Sensing
Images using Decision Tree, K-Nearest Neighbor,
Random Forest and Support Vector Machine Using
EuroSAT. nternational Journal of Intelligent Systems
and Applications in Engineering IJISAE, 2022(1s),67–
77. https://github.com/phelber/EuroSAT
Tsourounis, D., Kastaniotis, D., Theoharatos, C.,
Kazantzidis, A., & Economou, G. (2022). SIFT-CNN:
When Convolutional Neural Networks Meet Dense
SIFT Descriptors for Image and Sequence
Classification. Journal of Imaging, 8(10).
https://doi.org/10.3390/jimaging8100256
Wang, X., Xu, H., Yuan, L., Dai, W., & Wen, X. (2022). A
Remote-Sensing Scene-Image Classification Method
Based on Deep Multiple-Instance Learning with a
Residual Dense Attention ConvNet. In Remote Sensing
(Vol. 14, Issue 20). https://doi.org/10.3390/rs14205095
Weinzaepfel, P., Jégou, H., & Pérez, P. (2011).
Reconstructing an image from its local descriptors.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 337–344.
https://doi.org/10.1109/CVPR.2011.5995616
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote
sensing for agricultural applications: A meta-review.
Remote Sensing of Environment, 236, 111402.
https://doi.org/https://doi.org/10.1016/j.rse.2019.11140
2
Yaloveha, V., Podorozhniak, A., Kuchuk, H., &
Garashchuk, N. (2023). Performance Comparison of
Cnns on High-Resolution Multispectral Dataset
Applied To Land Cover Classification Problem.
Radioelectronic and Computer Systems, 2023(2(106)),
107–118. https://doi.org/10.32620/REKS.2023.2.09
Yu, L., Li, B., & Jiao, B. (2019). Research and
Implementation of CNN Based on TensorFlow. IOP
Conference Series: Materials Science and Engineering,
490, 42022. https://doi.org/10.1088/1757-899X/490/
4/042022.