
enjoyment smiles. In Computer Vision–ECCV 2012:
12th European Conference on Computer Vision, Flo-
rence, Italy, October 7-13, 2012, Proceedings, Part III
12, pages 525–538. Springer.
Eun, H., Moon, J., Park, J., Jung, C., and Kim, C. (2021).
Temporal filtering networks for online action detec-
tion. Pattern Recognition, 111:107695.
Fitzpatrick, T. B. (1975). Soleil et peau. J. Med. Esthet.,
2:33–34.
Gao, B.-B., Zhou, H.-Y., Wu, J., and Geng, X. (2018).
Age estimation using expectation of label distribution
learning. In IJCAI, pages 712–718.
Gao, J., Yang, Z., and Nevatia, R. (2017). Red: Rein-
forced encoder-decoder networks for action anticipa-
tion. arXiv preprint arXiv:1707.04818.
Guo, G., Mu, G., Fu, Y., and Huang, T. S. (2009). Hu-
man age estimation using bio-inspired features. In
2009 IEEE conference on computer vision and pattern
recognition, pages 112–119. IEEE.
Hadid, A. (2011). Analyzing facial behavioral features from
videos. In Human Behavior Understanding: Sec-
ond International Workshop, HBU 2011, Amsterdam,
The Netherlands, November 16, 2011. Proceedings 2,
pages 52–61. Springer.
Han, H., Otto, C., and Jain, A. K. (2013). Age estimation
from face images: Human vs. machine performance.
In 2013 international conference on biometrics (ICB),
pages 1–8. IEEE.
Han, J., Wang, W., Karaoglu, S., Zeng, W., and Gevers, T.
(2021). Pose invariant age estimation of face images
in the wild. Computer Vision and Image Understand-
ing, 202:103123.
Hazirbas, C., Bitton, J., Dolhansky, B., Pan, J., Gordo, A.,
and Ferrer, C. C. (2021). Towards measuring fairness
in ai: the casual conversations dataset. IEEE Trans-
actions on Biometrics, Behavior, and Identity Science,
4(3):324–332.
Hill, H. and Johnston, A. (2001). Categorizing sex and iden-
tity from the biological motion of faces. Current biol-
ogy, 11(11):880–885.
Hu, Z., Yang, Z., Hu, X., and Nevatia, R. (2021). Simple:
Similar pseudo label exploitation for semi-supervised
classification. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 15099–15108.
Ji, Z., Lang, C., Li, K., and Xing, J. (2018). Deep age es-
timation model stabilization from images to videos.
In 2018 24th International Conference on Pattern
Recognition (ICPR), pages 1420–1425. IEEE.
Kim, Y. H., Nam, S., and Kim, S. J. (2021). Temporally
smooth online action detection using cycle-consistent
future anticipation. Pattern Recognition, 116:107954.
King, D. E. (2009). Dlib-ml: A machine learning toolkit.
The Journal of Machine Learning Research, 10:1755–
1758.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Knight, B. and Johnston, A. (1997). The role of movement
in face recognition. Visual cognition, 4(3):265–273.
Lee, J.-H., Chan, Y.-M., Chen, T.-Y., and Chen, C.-S.
(2018). Joint estimation of age and gender from un-
constrained face images using lightweight multi-task
cnn for mobile applications. In 2018 IEEE conference
on multimedia information processing and retrieval
(MIPR), pages 162–165. IEEE.
Levi, G. and Hassner, T. (2015). Age and gender classifica-
tion using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition workshops, pages 34–42.
Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T.,
Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Ch-
eney, J., et al. (2018). Iarpa janus benchmark-c: Face
dataset and protocol. In 2018 international conference
on biometrics (ICB), pages 158–165. IEEE.
Monk, Ellis P., J. (2014). Skin Tone Stratification
among Black Americans, 2001–2003. Social Forces,
92(4):1313–1337.
Niu, Z., Zhou, M., Wang, L., Gao, X., and Hua, G. (2016).
Ordinal regression with multiple output cnn for age
estimation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4920–
4928.
Ojala, T., Pietik
¨
ainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on featured distributions. Pattern recognition,
29(1):51–59.
Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on pattern analysis and machine intelligence,
24(7):971–987.
Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., and
Goodfellow, I. (2018). Realistic evaluation of deep
semi-supervised learning algorithms. Advances in
neural information processing systems, 31.
Othmani, A., Taleb, A. R., Abdelkawy, H., and Hadid, A.
(2020). Age estimation from faces using deep learn-
ing: A comparative analysis. Computer Vision and
Image Understanding, 196:102961.
O’Toole, A. J., Roark, D. A., and Abdi, H. (2002). Rec-
ognizing moving faces: A psychological and neural
synthesis. Trends in cognitive sciences, 6(6):261–266.
Panis, G., Lanitis, A., Tsapatsoulis, N., and Cootes, T. F.
(2016). Overview of research on facial ageing using
the fg-net ageing database. Iet Biometrics, 5(2):37–
46.
Pei, W., Dibeklio
˘
glu, H., Baltru
ˇ
saitis, T., and Tax, D. M.
(2019). Attended end-to-end architecture for age esti-
mation from facial expression videos. IEEE Transac-
tions on Image Processing, 29:1972–1984.
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R.,
Geselowitz, A., Greer, T., ter Haar Romeny, B., Zim-
merman, J. B., and Zuiderveld, K. (1987). Adaptive
histogram equalization and its variations. Computer
vision, graphics, and image processing, 39(3):355–
368.
Porgali, B., Albiero, V., Ryda, J., Ferrer, C. C., and Hazir-
bas, C. (2023). The casual conversations v2 dataset.
Let Me Take a Better Look: Towards Video-Based Age Estimation
67