
REFERENCES
Acar, A., Lu, L., Uluagac, A. S., and Kirda, E. (2019). An
analysis of malware trends in enterprise networks. In
Information Security, pages 360–380.
Aljaidi, M., Alsarhan, A., Samara, G., Alazaidah, R., Al-
matarneh, S., Khalid, M., and Al-Gumaei, Y. A.
(2022). Nhs wannacry ransomware attack: Techni-
cal explanation of the vulnerability, exploitation, and
countermeasures. In EICEEAI, pages 1–6.
Auger, A. and Barri
`
ere, C. (2008). Pattern-based ap-
proaches to semantic relation extraction: A state-of-
the-art. Terminology, 14:1–19.
Bajpai, P. and Enbody, R. (2023). Know thy ransomware
response: A detailed framework for devising effective
ransomware response strategies. Digital Threats, 4(4).
Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi:
An open source software for exploring and manipulat-
ing networks.
Beaman, C., Barkworth, A., Akande, T. D., Hakak, S.,
and Khan, M. K. (2021). Ransomware: Recent ad-
vances, analysis, challenges and future research direc-
tions. Comput. Secur., 111(C).
Chainalysis (2023). Update: Crime down 65% overall, but
ransomware headed for huge year thanks to return of
big game hunting. https://www.chainalysis.com/blog
/crypto-crime-midyear-2023-update-ransomware-s
cams/. Accessed: 2023-10-22.
Chen, Q. and Bridges, R. A. (2017). Automated behavioral
analysis of malware: A case study of wannacry ran-
somware. In 16th IEEE ICMLA, pages 454–460.
Condamines, A. (2008). Taking genre into account when
analyzing conceptual relation patterns. Corpora, 3.
Dargahi, T., Dehghantanha, A., Bahrami, P. N., Conti, M.,
Bianchi, G., and Benedetto, L. (2019). A cyber-
kill-chain based taxonomy of crypto-ransomware fea-
tures. Journal of Computer Virology and Hacking
Techniques, 15(4):277–305.
Fortunee, M. (2021). Comparative Study Of Annotation
Tools And Techniques. PhD thesis, Afribary.
Hsiao, S.-C. and Kao, D.-Y. (2018). The static analysis of
wannacry ransomware. In 20th ICACT, pages 153–
158.
Kerns, Q., Payne, B., and Abegaz, T. (2022). Double-
extortion ransomware: A technical analysis of maze
ransomware. In Proceedings of FTC, pages 82–94.
Lanza, C. (2022). Semantic Control for the Cybersecurity
Domain: Investigation on the Representativeness of
a Domain-Specific Terminology Referring to Lexical
Variation. CRC Press.
Lim, J., Lau, Y. L., Ming Chan, L. K., Tristan Paul Goo,
J. M., Zhang, H., Zhang, Z., and Guo, H. (2023). Cve
records of known exploited vulnerabilities. In 8th IC-
CCS, pages 738–743.
Maigida, A. M., Abdulhamid, S. M., Olalere, M., Alhas-
san, J. K., Chiroma, H., and Dada, E. G. (2019). Sys-
tematic literature review and metadata analysis of ran-
somware attacks and detection mechanisms. Journal
of Reliable Intelligent Environments, 5(2):67–89.
Meyer, I. (2001). Extracting knowledge-rich contexts
for terminography: A conceptual and methodologi-
cal framework. In Recent Advances in Computational
Terminology, pages 279–302. John Benjamins.
Mirza, Q. K. A., Brown, M., Halling, O., Shand, L., and
Alam, A. (2021). Ransomware analysis using cyber
kill chain. In 8th FiCloud, pages 58–65.
Monika, Zavarsky, P., and Lindskog, D. (2016). Experimen-
tal analysis of ransomware on windows and android
platforms: Evolution and characterization. Procedia
Computer Science, 94:465–472.
Multi-State Information Sharing and Analysis Center
(2023). Renew your ransomware defense with cisa’s.
https://www.cisecurity.org/insights/blog/renew-you
r-ransomware-defense-with-cisas-updated-guidance.
Accessed: 2023-10-22.
Or-Meir, O., Nissim, N., Elovici, Y., and Rokach, L. (2019).
Dynamic malware analysis in the modern era—a state
of the art survey. ACM Comput. Surv., 52(5).
Oz, H., Aris, A., Levi, A., and Uluagac, A. S. (2022). A
survey on ransomware: Evolution, taxonomy, and de-
fense solutions. ACM Comput. Surv., 54(11s).
Pranshu Bajpai, R. E. (2020). Dissecting .net ransomware:
key generation, encryption and operation. Network
Security, 2020(2):8–14.
Roesiger, I., Bettinger, J., Sch
¨
afer, J., Dorna, M., and Heid,
U. (2016). Acquisition of semantic relations between
terms: how far can we get with standard NLP tools?
In 5th Computerm, pages 41–51, Osaka, Japan.
Tatam, M., Shanmugam, B., Azam, S., and Kannoorpatti,
K. (2021). A review of threat modelling approaches
for apt-style attacks. Heliyon, 7(1):e05969.
Zagrebelsky, G. (1984). Il sistema costituzionale delle fonti
del diritto. UTET, Turin.
An Empirical Study of Ransomware Vulnerabilities Descriptions
153