which will certainly enhance the model’s capabilities
of accurately classifying the data as well as its com-
putational time requirements.
REFERENCES
Al-Shammaa, M. and Abbod, M. F. (2014). Automatic
generation of fuzzy classification rules from data. In
Proc. of the 2014 International Conference on Neural
Networks-Fuzzy Systems (NN-FS 14), Venice.
Angelov, P. P. and Buswell, R. A. (2003). Automatic gener-
ation of fuzzy rule-based models from data by genetic
algorithms. Information Sciences, 150(1-2):17–31.
Bertsimas, D. and Dunn, J. (2017). Optimal classification
trees. Machine Learning, 106:1039–1082.
Chi, Z., Yan, H., and Pham, T. (1996). Fuzzy algorithms:
with applications to image processing and pattern
recognition, volume 10. World Scientific.
Chiu, S. (1997). Extracting fuzzy rules from data for func-
tion approximation and pattern classification.
Cintra, M. E., Monard, M. C., and Camargo, H. A. (2013).
A fuzzy decision tree algorithm based on c4. 5. Math-
ware & Soft Computing, 20(1):56–62.
Cohen, W. W. (1995). Fast effective rule induction. In Ma-
chine learning proceedings 1995, pages 115–123. El-
sevier.
Durkin, J. (1990). Research review: Application of expert
systems in the sciences. The Ohio Journal of Science,
90(5):171–179.
Elbaz, K., Shen, S.-L., Zhou, A., Yuan, D.-J., and Xu, Y.-S.
(2019). Optimization of epb shield performance with
adaptive neuro-fuzzy inference system and genetic al-
gorithm. Applied Sciences, 9(4):780.
G
´
omez-Skarmeta, A. F., Delgado, M., and Vila, M. A.
(1999). About the use of fuzzy clustering techniques
for fuzzy model identification. Fuzzy sets and systems,
106(2):179–188.
Gonzblez, A. and P
´
erez, R. (1999). Slave: A genetic learn-
ing system based on an iterative approach. IEEE
Transactions on fuzzy systems, 7(2):176–191.
Hambali, A., Yakub, K., Oladele, T. O., and Gbolagade,
M. D. (2019). Adaboost ensemble algorithms for
breast cancer classification. Journal of Advances in
Computer Research, 10(2):31–52.
Hentout, A., Maoudj, A., and Aouache, M. (2023). A re-
view of the literature on fuzzy-logic approaches for
collision-free path planning of manipulator robots. Ar-
tificial Intelligence Review, 56(4):3369–3444.
Hssina, B., Merbouha, A., Ezzikouri, H., and Erritali, M.
(2014). A comparative study of decision tree id3 and
c4. 5. International Journal of Advanced Computer
Science and Applications, 4(2):13–19.
H
¨
uhn, J. and H
¨
ullermeier, E. (2009). Furia: an algorithm
for unordered fuzzy rule induction. Data Mining and
Knowledge Discovery, 19:293–319.
H
¨
uhn, J. C. and H
¨
ullermeier, E. (2010). An analysis of
the furia algorithm for fuzzy rule induction. In Ad-
vances in Machine Learning I: Dedicated to the Mem-
ory of Professor Ryszard S. Michalski, pages 321–344.
Springer.
H
¨
ullermeier, E. (2011). Fuzzy sets in machine learning and
data mining. Applied Soft Computing, 11(2):1493–
1505.
Kerarmi, A., Kamal-idrissi, A., Seghrouchni, A. E. F., et al.
(2022). An optimized fuzzy logic model for proactive
maintenance. In CS & IT Conference Proceedings,
volume 12. CS & IT Conference Proceedings.
Kontogiannis, D., Bargiotas, D., and Daskalopulu, A.
(2021). Fuzzy control system for smart energy man-
agement in residential buildings based on environ-
mental data. Energies, 14(3):752.
Mousavi, S. M., Tavana, M., Alikar, N., and Zandieh, M.
(2019). A tuned hybrid intelligent fruit fly optimiza-
tion algorithm for fuzzy rule generation and classifi-
cation. Neural Computing and Applications, 31:873–
885.
Mutlu, B., Sezer, E. A., and Akcayol, M. A. (2018). Auto-
matic rule generation of fuzzy systems: A compar-
ative assessment on software defect prediction. In
2018 3rd International Conference on Computer Sci-
ence and Engineering (UBMK), pages 209–214.
Prado, R., Garcia-Gal
´
an, S., Exposito, J. M., and Yuste,
A. J. (2010). Knowledge acquisition in fuzzy-
rule-based systems with particle-swarm optimization.
IEEE Transactions on Fuzzy Systems, 18(6):1083–
1097.
Quinlan, J. R. (2014). C4. 5: programs for machine learn-
ing. Elsevier.
Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Rajput,
D. S., Kaluri, R., and Srivastava, G. (2020). Hybrid
genetic algorithm and a fuzzy logic classifier for heart
disease diagnosis. Evolutionary Intelligence, 13:185–
196.
Ren, Q., zhang, H., Zhang, D., Zhao, X., Yan, L., and Rui,
J. (2022). A novel hybrid method of lithology identi-
fication based on k-means++ algorithm and fuzzy de-
cision tree. Journal of Petroleum Science and Engi-
neering, 208:109681.
Rzeszucinski, P., Sinha, J. K., Edwards, R., Starr, A., and
Allen, B. (2012). Normalised root mean square and
amplitude of sidebands of vibration response as tools
for gearbox diagnosis. Strain, 48(6):445–452.
Tran, T. T., Nguyen, T. N., Nguyen, T. T., Nguyen, G. L.,
and Truong, C. N. (2022). A fuzzy association rules
mining algorithm with fuzzy partitioning optimization
for intelligent decision systems. International Journal
of Fuzzy Systems, 24(5):2617–2630.
Varshney, A. K. and Torra, V. (2023). Literature review
of the recent trends and applications in various fuzzy
rule-based systems. International Journal of Fuzzy
Systems, pages 1–24.
Witten, I. H., Frank, E., Hall, M. A., Pal, C. J., and Data,
M. (2005). Practical machine learning tools and tech-
niques. In Data mining, volume 2, pages 403–413.
Elsevier Amsterdam, The Netherlands.
Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.
Optimization of Fuzzy Rule Induction Based on Decision Tree and Truth Table: A Case Study of Multi-Class Fault Diagnosis
323