as the inability to generalize home directories, also
seems promising. Moreover, expanding beyond Ap-
pArmor file access policies seems a natural next step.
Thus, future work should extend the scope and con-
sider further application domains, e.g., other MAC
systems like SELinux, or completely different appli-
cations like web-APIs or firewall rules.
REFERENCES
Anderson, R. (2020). Security engineering: a guide to
building dependable distributed systems. John Wiley
& Sons.
Apt, K. R. et al. (1997). From logic programming to Prolog,
volume 362. Prentice Hall London.
Beckerle, M. and Martucci, L. A. (2013). Formal defini-
tions for usable access control rule sets from goals to
metrics. In Proceedings of the ninth symposium on
usable privacy and security.
Bertino, E., Russo, A., Law, M., Calo, S., Manotas, I.,
Verma, D., Jabal, A. A., Cunnington, D., de Mel, G.,
White, G., et al. (2019). Generative policies for coali-
tion systems-a symbolic learning framework. In 2019
IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE.
Calo, S., Manotas, I., de Mel, G., Cunnington, D., Law, M.,
Verma, D., Russo, A., and Bertino, E. (2019). Agenp:
An asgrammar-based generative policy framework.
Policy-based autonomic data governance.
Cropper, A. and Duman
ˇ
ci
´
c, S. (2022). Inductive logic pro-
gramming at 30: a new introduction. Journal of Arti-
ficial Intelligence Research, 74.
Cunnington, D., Law, M., Russo, A., Bertino, E., and Calo,
S. (2019a). Towards a neural-symbolic generative pol-
icy model. In 2019 IEEE International Conference on
Big Data (Big Data). IEEE.
Cunnington, D., Manotas, I., Law, M., de Mel, G., Calo,
S., Bertino, E., and Russo, A. (2019b). A generative
policy model for connected and autonomous vehicles.
In 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC). IEEE.
Drozdov, A., Law, M., Lobo, J., Russo, A., and Don, M. W.
(2021). Online symbolic learning of policies for ex-
plainable security. In 2021 Third IEEE International
Conference on Trust, Privacy and Security in Intelli-
gent Systems and Applications (TPS-ISA). IEEE.
Huang, C., Wang, K., Li, Y., Li, J., and Liao, Q. (2022).
Aspgen-d: Automatically generating fine-grained ap-
parmor policies for docker. In 2022 IEEE ISPA/BD-
Cloud/SocialCom/SustainCom. IEEE.
Law, M., Russo, A., Bertino, E., Broda, K., and Lobo, J.
(2020a). Fastlas: scalable inductive logic program-
ming incorporating domain-specific optimisation cri-
teria. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 34.
Law, M., Russo, A., and Broda, K. (2014). Inductive learn-
ing of answer set programs. In Logics in Artificial In-
telligence: 14th European Conference, JELIA 2014,
Funchal, Madeira, Portugal, September 24-26, 2014.
Proceedings 14. Springer.
Law, M., Russo, A., and Broda, K. (2020b). The ilasp
system for inductive learning of answer set programs.
arXiv preprint arXiv:2005.00904.
Li, Y., Huang, C., Yuan, L., Ding, Y., and Cheng, H.
(2020). Aspgen: an automatic security policy gener-
ating framework for apparmor. In 2020 IEEE ISPA/B-
DCloud/SocialCom/SustainCom. IEEE.
Lifschitz, V. (2019). Answer set programming. Springer
Heidelberg.
Loukidis-Andreou, F., Giannakopoulos, I., Doka, K., and
Koziris, N. (2018). Docker-sec: A fully automated
container security enhancement mechanism. In 2018
IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE.
Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A.,
Dolev, S., and Foschini, L. (2015). Securing the in-
frastructure and the workloads of linux containers. In
2015 IEEE Conference on Communications and Net-
work Security (CNS). IEEE.
Muggleton, S. (1991). Inductive logic programming. New
generation computing, 8.
Nobi, M. N., Gupta, M., Praharaj, L., Abdelsalam, M., Kr-
ishnan, R., and Sandhu, R. (2022). Machine learn-
ing in access control: A taxonomy and survey. arXiv
preprint arXiv:2207.01739.
Rechkemmer, A. and Yin, M. (2022). When confidence
meets accuracy: Exploring the effects of multiple per-
formance indicators on trust in machine learning mod-
els. In Proceedings of the 2022 chi conference on hu-
man factors in computing systems.
Smalley, S., Vance, C., and Salamon, W. (2001). Imple-
menting selinux as a linux security module. NAI Labs
Report, 1(43).
Wright, C., Cowan, C., Smalley, S., Morris, J., and Kroah-
Hartman, G. (2002). Linux security modules: General
security support for the linux kernel. In 11th USENIX
Security Symposium (USENIX Security 02).
Zhu, H. and Gehrmann, C. (2021). Lic-sec: an enhanced
apparmor docker security profile generator. Journal
of Information Security and Applications, 61.
Zhu, H. and Gehrmann, C. (2022). Kub-sec, an au-
tomatic kubernetes cluster apparmor profile genera-
tion engine. In 2022 14th International Conference
on COMmunication Systems & NETworkS (COM-
SNETS). IEEE.
Zhu, H., Gehrmann, C., and Roth, P. (2023). Access secu-
rity policy generation for containers as a cloud service.
SN Computer Science, 4(6).
Using ILP to Learn AppArmor Policies
773