
REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2012). Slic superpixels compared to
state-of-the-art superpixel methods. IEEE transac-
tions on pattern analysis and machine intelligence,
34(11):2274–2282.
Aksoy, Y., Oh, T.-H., Paris, S., Pollefeys, M., and Matusik,
W. (2018). Semantic soft segmentation. ACM Trans-
actions on Graphics (TOG), 37(4):1–13.
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).
Segnet: A deep convolutional encoder-decoder ar-
chitecture for image segmentation. IEEE transac-
tions on pattern analysis and machine intelligence,
39(12):2481–2495.
Bianchi, F. M., Grattarola, D., and Alippi, C. (2020). Spec-
tral clustering with graph neural networks for graph
pooling. In International Conference on Machine
Learning, pages 874–883. PMLR.
Brown, E. S., Chan, T. F., and Bresson, X. (2012). Com-
pletely convex formulation of the chan-vese image
segmentation model. International journal of com-
puter vision, 98(1):103–121.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2017). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence, 40(4):834–
848.
Chen, Q., Huang, Y., Sun, H., and Huang, W. (2021). Pave-
ment crack detection using hessian structure propaga-
tion. Advanced Engineering Informatics, 49:101303.
Criminisi, A., Sharp, T., Rother, C., and P
´
erez, P. (2010).
Geodesic image and video editing. ACM Trans.
Graph., 29(5):134–1.
Danon, D., Averbuch-Elor, H., Fried, O., and Cohen-Or, D.
(2019). Unsupervised natural image patch learning.
Computational Visual Media, 5(3):229–237.
Eliasof, M., Zikri, N. B., and Treister, E. (2022). Un-
supervised image semantic segmentation through su-
perpixels and graph neural networks. arXiv preprint
arXiv:2210.11810.
Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klam-
bauer, G., Hochreiter, S., and Nessler, B. (2019). Vi-
sual scene understanding for autonomous driving us-
ing semantic segmentation. In Explainable AI: Inter-
preting, Explaining and Visualizing Deep Learning,
pages 285–296. Springer.
Hsu, J., Gu, J., Wu, G., Chiu, W., and Yeung, S.
(2021). Capturing implicit hierarchical structure in
3d biomedical images with self-supervised hyperbolic
representations. Advances in Neural Information Pro-
cessing Systems, 34:5112–5123.
Ibrahim, A. and El-kenawy, E.-S. M. (2020). Image seg-
mentation methods based on superpixel techniques: A
survey. Journal of Computer Science and Information
Systems, 15(3):1–11.
Ji, X., Henriques, J. F., and Vedaldi, A. (2019). Invariant
information clustering for unsupervised image clas-
sification and segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 9865–9874.
Kanezaki, A. (2018). Unsupervised image segmentation by
backpropagation. In 2018 IEEE international con-
ference on acoustics, speech and signal processing
(ICASSP), pages 1543–1547. IEEE.
Kang, D., Benipal, S. S., Gopal, D. L., and Cha, Y.-J.
(2020). Hybrid pixel-level concrete crack segmenta-
tion and quantification across complex backgrounds
using deep learning. Automation in Construction,
118:103291.
Kim, W., Kanezaki, A., and Tanaka, M. (2020). Unsuper-
vised learning of image segmentation based on dif-
ferentiable feature clustering. IEEE Transactions on
Image Processing, 29:8055–8068.
Lambert, Z., Le Guyader, C., and Petitjean, C. (2021). A
geometrically-constrained deep network for ct image
segmentation. In 2021 IEEE 18th International Sym-
posium on Biomedical Imaging (ISBI), pages 29–33.
IEEE.
Lempitsky, V., Kohli, P., Rother, C., and Sharp, T. (2009).
Image segmentation with a bounding box prior. In
2009 IEEE 12th international conference on computer
vision, pages 277–284. IEEE.
Lin, D., Dai, J., Jia, J., He, K., and Sun, J. (2016). Scribble-
sup: Scribble-supervised convolutional networks for
semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 3159–3167.
Lin, G., Milan, A., Shen, C., and Reid, I. (2017). Refinenet:
Multi-path refinement networks for high-resolution
semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1925–1934.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001).
A database of human segmented natural images and
its application to evaluating segmentation algorithms
and measuring ecological statistics. In Proc. 8th Int’l
Conf. Computer Vision, volume 2, pages 416–423.
Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtar-
navaz, N., and Terzopoulos, D. (2021). Image seg-
mentation using deep learning: A survey. IEEE trans-
actions on pattern analysis and machine intelligence.
Mirsadeghi, S. E., Royat, A., and Rezatofighi, H. (2021).
Unsupervised image segmentation by mutual infor-
mation maximization and adversarial regularization.
IEEE Robotics and Automation Letters, 6(4):6931–
6938.
Moriya, T., Roth, H. R., Nakamura, S., Oda, H., Nagara,
K., Oda, M., and Mori, K. (2018). Unsupervised seg-
mentation of 3d medical images based on clustering
and deep representation learning. In Medical Imaging
2018: Biomedical Applications in Molecular, Struc-
tural, and Functional Imaging, volume 10578, pages
483–489. SPIE.
Neubert, P. and Protzel, P. (2014). Compact watershed
and preemptive slic: On improving trade-offs of su-
perpixel segmentation algorithms. In 2014 22nd in-
ternational conference on pattern recognition, pages
996–1001. IEEE.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
584