
embreck, F., Pfharinger, B., Holmes, G., and Ab-
dessalem, T. (2017). Adaptive random forests for
evolving data stream classification. Machine Learn-
ing, 106(9):1469–1495.
Jin, D., Lu, Y., Qin, J., Cheng, Z., and Mao, Z. (2020).
Swiftids: Real-time intrusion detection system based
on lightgbm and parallel intrusion detection mecha-
nism. Computers & Security, 97:101984.
Liu, J., Kantarci, B., and Adams, C. (2020). Ma-
chine learning-driven intrusion detection for contiki-
ng-based iot networks exposed to nsl-kdd dataset. In
Proceedings of the 2nd ACM Workshop on Wireless
Security and Machine Learning, WiseML ’20, page
25–30, New York, NY, USA. Association for Com-
puting Machinery.
Losing, V., Hammer, B., and Wersing, H. (2016). Knn clas-
sifier with self adjusting memory for heterogeneous
concept drift. In 2016 IEEE 16th International Con-
ference on Data Mining (ICDM), pages 291–300.
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang,
G. (2019). Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineer-
ing, 31(12):2346–2363.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. (2020). From local explanations to
global understanding with explainable ai for trees. Na-
ture Machine Intelligence, 2(1):56–67.
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, page 4768–4777,
Red Hook, NY, USA. Curran Associates Inc.
Manapragada, C., Webb, G. I., and Salehi, M. (2018). Ex-
tremely fast decision tree. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’18, page
1953–1962, New York, NY, USA. Association for
Computing Machinery.
Naeini, M. P., Cooper, G. F., and Hauskrecht, M. (2015).
Obtaining well calibrated probabilities using bayesian
binning. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages
2901–2907. AAAI Press.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should i trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 1135–1144, New
York, NY, USA. Association for Computing Machin-
ery.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A.
(2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In Inter-
national Conference on Information Systems Security
and Privacy.
Ullah, I. and Mahmoud, Q. H. (2020). A scheme for gen-
erating a dataset for anomalous activity detection in
iot networks. In Advances in Artificial Intelligence:
33rd Canadian Conference on Artificial Intelligence,
Canadian AI 2020, Ottawa, ON, Canada, May 13–15,
2020, Proceedings, page 508–520, Berlin, Heidel-
berg. Springer-Verlag.
Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten,
F., Roll, J., and Sch
¨
on, T. (2019). Evaluating model
calibration in classification. In Chaudhuri, K. and
Sugiyama, M., editors, Proceedings of the Twenty-
Second International Conference on Artificial Intelli-
gence and Statistics, volume 89 of Proceedings of Ma-
chine Learning Research, pages 3459–3467. PMLR.
Van den Broeck, G., Lykov, A., Schleich, M., and Suciu, D.
(2021). On the tractability of SHAP explanations. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence.
Yang, L., Manias, D. M., and Shami, A. (2021). Pwpae: An
ensemble framework for concept drift adaptation in iot
data streams. In 2021 IEEE Global Communications
Conference (GLOBECOM), pages 01–06.
Yang, L. and Shami, A. (2021). A lightweight concept
drift detection and adaptation framework for iot data
streams. IEEE Internet of Things Magazine, 4:96–
101.
Yang, L. and Shami, A. (2023). A multi-stage automated
online network data stream analytics framework for
IIoT systems. IEEE Transactions on Industrial Infor-
matics, 19(2):2107–2116.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
346