
Flocking Behavior using Multi-Agent Reinforcement
Learning. In Proceedings of the 2019 Conference on
Artificial Life, pages 598–605.
Hahn, C., Ritz, F., Wikidal, P., Phan, T., Gabor, T., and
Linnhoff-Popien, C. (2020b). Foraging swarms using
multi-agent reinforcement learning. In Proceedings
of the 2020 Conference on Artificial Life, pages
333–340.
H
¨
uttenrauch, M.,
ˇ
So
ˇ
si
´
c, A., and Neumann, G. (2019). Deep
reinforcement learning for swarm systems. Journal of
Machine Learning Research, 20(54):1–31.
Kuchkuda, R. (1988). An Introduction to Ray Tracing.
Theoretical Foundations of Computer Graphics and
CAD, pages 1039–1060.
Li, J., Li, L., and Zhao, S. (2023). Predator–prey survival
pressure is sufficient to evolve swarming behaviors.
New Journal of Physics, 25(9):092001.
Lowe, R., WU, Y., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 30, pages 6379–6390.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., et al. (2015).
Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533.
Mordatch, I. and Abbeel, P. (2018). Emergence of grounded
compositional language in multi-agent populations. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence.
Olson Randal S., Haley Patrick B., D. F. C. and
Christoph, A. (2015). Exploring the evolution
of a trade-off between vigilance and foraging in
group-living organisms. Royal Society Open Science,
2(9).
Phan, T., Belzner, L., Gabor, T., Sedlmeier, A., Ritz,
F., and Linnhoff-Popien, C. (2021). Resilient
multi-agent reinforcement learning with adversarial
value decomposition. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages
11308–11316.
Reynolds, C. W. (1987). Flocks, herds and schools:
A distributed behavioral model. ACM SIGGRAPH
Computer Graphics, 21(4):25–34.
Reynolds, C. W. (1999). Steering behaviors for autonomous
characters. Game developers conference, pages
763–782.
Ritz, F., Hohnstein, F., M
¨
uller, R., Phan, T., Gabor, T.,
Hahn, C., and Linnhoff-Popien, C. (2020). Towards
Ecosystem Management from Greedy Reinforcement
Learning in a Predator-Prey Setting. In Proceedings
of the 2020 Conference on Artificial Life, pages
518–525.
Ritz, F., Ratke, D., Phan, T., Belzner, L., and
Linnhoff-Popien, C. (2021). A Sustainable Ecosystem
through Emergent Cooperation in Multi-Agent
Reinforcement Learning. In Proceedings of the 2021
Conference on Artificial Life, pages 74–84.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint, abs/1707.06347.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., Lillicrap, T., Simonyan, K., and
Hassabis, D. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144.
Stone, P. and Veloso, M. (2000). Multiagent systems:
A survey from a machine learning perspective.
Autonomous Robots, 8(3):345–383.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement
Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA.
Terry, J., Black, B., Grammel, N., Jayakumar, M.,
Hari, A., Sullivan, R., Santos, L. S., Dieffendahl,
C., Horsch, C., Perez-Vicente, R., et al. (2021).
Pettingzoo: Gym for multi-agent reinforcement
learning. Advances in Neural Information Processing
Systems, 34:15032–15043.
Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu,
M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., et al. (2019). Grandmaster
level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354.
Volterra, V. (1926). Fluctuations in the Abundance
of a Species considered Mathematically1. Nature,
118(2972):558–560.
Yang, Y., Yu, L., Bai, Y., Wen, Y., Zhang, W., and Wang,
J. (2018). A study of ai population dynamics with
million-agent reinforcement learning. In Proceedings
of the 17th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), page
2133–2135.
Zhong-Yu, L., Li-Xin, G., and Zhong-Bo, Z. (2010). An
acceleration technique for 2d ray tracing simulation
based on the research of diffraction in urban
environment. In Proceedings of the 9th International
Symposium on Antennas, Propagation and EM
Theory, pages 493–496.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
70